期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种基于混合词向量的胶囊网络文本分类方法 被引量:3
1
作者 王弘中 刘漳辉 郭昆 《小型微型计算机系统》 CSCD 北大核心 2020年第1期218-224,共7页
文本分类是目前深度学习方法被广泛应用的重要领域之一.本文设计了一种基于循环神经网络和胶囊网络的混合模型,使用胶囊网络来克服卷积神经网络对空间不敏感的缺点,学习文本局部与整体之间的关系特征,并使用循环神经网络中的GRU神经网... 文本分类是目前深度学习方法被广泛应用的重要领域之一.本文设计了一种基于循环神经网络和胶囊网络的混合模型,使用胶囊网络来克服卷积神经网络对空间不敏感的缺点,学习文本局部与整体之间的关系特征,并使用循环神经网络中的GRU神经网络经过最大池化层来学习上下文显著信息特征,结合两者来优化特征提取过程从而提高文本分类效果.与此同时,在嵌入层中提出了一种基于缺失词补全的混合词向量方法,采用两种策略来减少缺失词过度匹配的现象以及降低词向量中的噪声数据出现的概率,从而获得语义丰富且少噪声的高质量词向量.在经典文本分类数据集中进行实验,通过与对比模型的最优方法进行比较,证明了该模型和方法能有效地提升文本分类准确度. 展开更多
关键词 文本分类 深度学习 胶囊网络 混合词向量 Fasttext向量
下载PDF
基于混合词向量深度学习模型的DGA域名检测方法 被引量:19
2
作者 杜鹏 丁世飞 《计算机研究与发展》 EI CSCD 北大核心 2020年第2期433-446,共14页
域名生成算法(domain generation algorithm,DGA)是域名检测中防范僵尸网络攻击的重要手段之一,对于生成威胁情报、阻断僵尸网络命令与控制流量、保障网络安全有重要的实际意义.近年来,DGA域名检测技术从依靠手工提取特征发展到自动提... 域名生成算法(domain generation algorithm,DGA)是域名检测中防范僵尸网络攻击的重要手段之一,对于生成威胁情报、阻断僵尸网络命令与控制流量、保障网络安全有重要的实际意义.近年来,DGA域名检测技术从依靠手工提取特征发展到自动提取特征的基于深度学习模型的方法,在DGA域名检测任务中取得了较大的进展.但对于不同僵尸网络家族的DGA域名的多分类任务,由于家族种类多,且各家族域名数据存在不平衡性,因此许多已有的深度学习模型在DGA域名的多分类任务上仍有提高空间.针对以上挑战,设计了基于字符和双字母组级别的混合词向量,以提高域名字符串的信息利用度,并设计了基于混合词向量方法的深度学习模型.最后设计了包含多种对比模型的实验,对混合词向量的有效性进行验证.实验结果表明基于混合词向量的深度学习模型在DGA域名检测与分类任务中相比只基于字符级词向量的模型有更好的分类性能,特别是在小样本的DGA域名类别上的分类性能更优,证明了该模型的有效性. 展开更多
关键词 域名生成算法 混合词向量 深度学习 卷积神经网络 长短期记忆网络
下载PDF
基于CNN的假冒域名识别方法研究 被引量:3
3
作者 杜淑颖 杜鹏 丁世飞 《中国科学技术大学学报》 CAS CSCD 北大核心 2020年第7期1019-1025,共7页
近年来,以僵尸网络为载体的各种网络攻击活动是目前互联网面临的安全威胁之一,各种恶意软件使用域名生成算法(domain generation algorithm,DGA)自动生成大量伪随机域名以连接到命令和控制服务器.为此提出以基于卷积神经网络(CNN)的方... 近年来,以僵尸网络为载体的各种网络攻击活动是目前互联网面临的安全威胁之一,各种恶意软件使用域名生成算法(domain generation algorithm,DGA)自动生成大量伪随机域名以连接到命令和控制服务器.为此提出以基于卷积神经网络(CNN)的方法来检测和分类伪随机域名.简要介绍了僵尸网络的危害、基本原理以及假冒域名在僵尸网络中的作用.在分析DGA算法的原理以及传统的DGA域名识别算法的缺陷以后,将重点放在基于卷积神经网络的假冒域名识别方法研究.阐述了关于卷积神经网络的基本概念,模拟了在不同的超参数,不同的激励函数下模型对于解决分类问题效果的差异.分析了数据预处理的原理、模型定义中对于超参数和激励函数、学习速率等选择的合理性.在模型运行结果分析时,给出了卷积神经网络模型识别域名的准确率和损失函数的变化,使用准确率、召回值、F1值、ROC曲线等评估指标,各项指标均显示模型取得了优秀的分类效果,证明了基于CNN的假冒域名识别是一个可靠的方法. 展开更多
关键词 域名生成算法 混合词向量 深度学习 卷积神经网络
下载PDF
Hybrid Features for an Arabic Word Recognition System
4
作者 Mehmmood A. Abd Sarab Al Rubeaai George Paschos 《Computer Technology and Application》 2012年第10期685-691,共7页
This research proposes and implements an Arabic Sub-Words Recognition System (ASWR). The system focuses on employing a combination of statistical and structural features to provide complete pattern's description an... This research proposes and implements an Arabic Sub-Words Recognition System (ASWR). The system focuses on employing a combination of statistical and structural features to provide complete pattern's description and enhances the recognition rate. Support Vector Machines (SVMs) is utilized as a promising pattern recognition tool. In addition to that, the problems of dots and holes are solved in a completely different way from the ones previously employed. The proposed system proceeds in several phases as follows: (1) image acquisition, (2) binarisation, (3) morphological processing, (4) feature extraction, which includes statistical features, i.e., moment invariants, and structural features, i.e., dot number, dot position, and number of holes, features, and (5) classification, using multi-class SVMs and applying a one-against-all technique. The proposed system has been tested using different sets of words and subwords and has achieved a nearly 98.90% recogiaition rate. Comparative results with NNs are also presented. 展开更多
关键词 Arabic word recognition support vector machines CLASSIFICATION feature extraction neural networks morphological.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部