Automatic image annotation(AIA)has become an important and challenging problem in computer vision due to the existence of semantic gap.In this paper,a novel support vector machine with mixture of kernels(SVM-MK)for au...Automatic image annotation(AIA)has become an important and challenging problem in computer vision due to the existence of semantic gap.In this paper,a novel support vector machine with mixture of kernels(SVM-MK)for automatic image annotation is proposed.On one hand,the combined global and local block-based image features are extracted in order to reflect the intrinsic content of images as complete as possible.On the other hand,SVM-MK is constructed to shoot for better annotating performance.Experimental results on Corel dataset show that the proposed image feature representation method as well as automatic image annotation classifier,SVM-MK,can achieve higher annotating accuracy than SVM with any single kernel and mi-SVM for semantic image annotation.展开更多
This research proposes and implements an Arabic Sub-Words Recognition System (ASWR). The system focuses on employing a combination of statistical and structural features to provide complete pattern's description an...This research proposes and implements an Arabic Sub-Words Recognition System (ASWR). The system focuses on employing a combination of statistical and structural features to provide complete pattern's description and enhances the recognition rate. Support Vector Machines (SVMs) is utilized as a promising pattern recognition tool. In addition to that, the problems of dots and holes are solved in a completely different way from the ones previously employed. The proposed system proceeds in several phases as follows: (1) image acquisition, (2) binarisation, (3) morphological processing, (4) feature extraction, which includes statistical features, i.e., moment invariants, and structural features, i.e., dot number, dot position, and number of holes, features, and (5) classification, using multi-class SVMs and applying a one-against-all technique. The proposed system has been tested using different sets of words and subwords and has achieved a nearly 98.90% recogiaition rate. Comparative results with NNs are also presented.展开更多
基金Supported by the National Basic Research Priorities Programme(No.2007CB311004)the National Natural Science Foundation of China(No.61035003,60933004,60903141,60970088,61072085)
文摘Automatic image annotation(AIA)has become an important and challenging problem in computer vision due to the existence of semantic gap.In this paper,a novel support vector machine with mixture of kernels(SVM-MK)for automatic image annotation is proposed.On one hand,the combined global and local block-based image features are extracted in order to reflect the intrinsic content of images as complete as possible.On the other hand,SVM-MK is constructed to shoot for better annotating performance.Experimental results on Corel dataset show that the proposed image feature representation method as well as automatic image annotation classifier,SVM-MK,can achieve higher annotating accuracy than SVM with any single kernel and mi-SVM for semantic image annotation.
文摘This research proposes and implements an Arabic Sub-Words Recognition System (ASWR). The system focuses on employing a combination of statistical and structural features to provide complete pattern's description and enhances the recognition rate. Support Vector Machines (SVMs) is utilized as a promising pattern recognition tool. In addition to that, the problems of dots and holes are solved in a completely different way from the ones previously employed. The proposed system proceeds in several phases as follows: (1) image acquisition, (2) binarisation, (3) morphological processing, (4) feature extraction, which includes statistical features, i.e., moment invariants, and structural features, i.e., dot number, dot position, and number of holes, features, and (5) classification, using multi-class SVMs and applying a one-against-all technique. The proposed system has been tested using different sets of words and subwords and has achieved a nearly 98.90% recogiaition rate. Comparative results with NNs are also presented.