The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study,...The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study, the authors investigated aerosol optical properties as a func tion of relative humidity (RH) for two representative me tropolises: Beijing and Hong Kong. In addition to the RH data, mass concentrations of PM10 (particulate matter up to 10 utm in diameter) and aerosol scattering extinction coefficient (aext) data were used. The relationship between the mass scattering extinction efficiency (MEE, defined as O'ext/PMl0) and RH can be expressed by regression func tions asf= 1.52x + 0.29 (re= 0.77),f= 1.42x + 1.53 (re= 0.58),f= 1.19x + 0.65 (re= 0.59), andf= 1.58x + 1.30 (re = 0.61) for spring, summer, autumn, and winter, respec tively, in Beijing. Here, f represents MEE, x represents I/(1-RH), and the coefficients of determination are pre sented in parentheses. Conversely, in Hong Kong, the corresponding functions are f= 1.98x- 1.40 (r^2= 0.55),f = 1.32x - 0.36 (r^2 = 0.26),f= 1.87x - 0.65 (r^2 = 0.64), and f= 2.39x - 1.47 (r^2 = 0.72), respectively. The MEE values for Hong Kong at high RHs (RH 〉 70%) are higher than those for Beijing, except in summer; this suggests that aerosols in Hong Kong are more hygroscopic than those in Beijing for the other three seasons, but the aerosol hy groscopicity is similarly high in summer over both cities. This study describes the effects of moisture on aerosol scattering extinction coefficients and provides a potential method of studying atmospheric visibility and ground level air quality using some of the optical remote sensing products of satellites.展开更多
Soil-rock mixtures(S-RMs) are widely distributed in the nature. The mesoscopic deformation and failure mechanisms as well as the macro-mechanical behaviors of the S-RMs depend largely upon the rate of deformation, wat...Soil-rock mixtures(S-RMs) are widely distributed in the nature. The mesoscopic deformation and failure mechanisms as well as the macro-mechanical behaviors of the S-RMs depend largely upon the rate of deformation, water content and particle sizes. In this research, a series of large-scale direct shear tests with different water contents and different grain-size distributions were conducted to study the influence of the aforementioned factors on the mechanical properties of the S-RMs. Due to the effect of the rock blocks' breakage in the S-RMs, the relationship between the shear strength and the vertical stress of S-RM follows a power law instead of a linear one. It is found that there exists a threshold value for the vertical stress during the shearing process,below which the soil strength is mainly determined by the inter-locking of particles and the re-arrangement of meso-structure,and otherwise large-sized rock blocks are gradually broken into smaller fragments, resulting in a decrease in the soil strength.The shear rate can also significantly influence the degree of particle breakage and the meso-structural rearrangement of the SRMs, namely, under low shear rate, the particles of the samples are fully broken resulting in enhanced macro-strength. As a result, the lower the shear rate, the higher the macroscopic strength. So under unsaturated conditions, the water content will affect the strength of the S-RMs by reducing the strength of rock blocks. As the water content increases, the soil strength decreases gradually, and assumes a moderate value when the water content reaches 8%. At the same water content, the soil strength increases with the sizes of large rock blocks. For the occlusion, breakage and structure re-arrangement of the oversized rock blocks inside S-RM, which have a huge influence on the mechanical characteristics of the samples.展开更多
A label-free and low-cost mapping method based on SERS imaging was reported for illustrating the distribution of phospho- lipids with similar structures in binary lipid membranes on Ag nanoparticles (Ag NPs) films. ...A label-free and low-cost mapping method based on SERS imaging was reported for illustrating the distribution of phospho- lipids with similar structures in binary lipid membranes on Ag nanoparticles (Ag NPs) films. The Ag NPs films exhibited strong SERS activity and good reproducibility which were investigated with p-aminothiopbenol (p-ATP) as probe molecules. Atomic force microscope (AFM) measurement proved that compact lipid membranes formed on the Ag NPs films. Basing on the Ag NPs films, the SERS spectra of phospholipids in the mixed lipid membranes were achieved and the inherent vibration of 1,2-dimyristoyl-sn-lycero-3-phosphoglycerol, sodium salt (DMPG), 1482 cm-1, was used to distinguish between DMPG and dimyristoylphosphatidylcholine (DMPC). The proportions of phospholipids in the mixed lipid membranes were represented by the intensity ratio of peaks at 1482 cm-1 and 1650 cm1 (R1482/1650) simultaneously: increasing R1482/1650 indicated higher propor- tion of DMPG and lower proportion of DMPC. SERS imaging of the lipid membranes was constructed as a combination of spacial information and the semiquantitative detection of phospholipids according to R1482/1650, which showed that the charged phospholipids, DMPG, aggregated in the hybrid lipid membranes. The presented mapping strategy based on SERS imaging carried out on Ag NPs films supplied a facile, label-free and inexpensive way for potential applications in the research on the structure of the lipid membrane, such as lipid domains and rafts.展开更多
基金supported by the"Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05040000)the National Natural Science Foundation of China (Grant Nos. 40775002 and 41175020)the National High Technology Research and Development Program of China (863 Program, Grant No. SQ2010AA1221583001)
文摘The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study, the authors investigated aerosol optical properties as a func tion of relative humidity (RH) for two representative me tropolises: Beijing and Hong Kong. In addition to the RH data, mass concentrations of PM10 (particulate matter up to 10 utm in diameter) and aerosol scattering extinction coefficient (aext) data were used. The relationship between the mass scattering extinction efficiency (MEE, defined as O'ext/PMl0) and RH can be expressed by regression func tions asf= 1.52x + 0.29 (re= 0.77),f= 1.42x + 1.53 (re= 0.58),f= 1.19x + 0.65 (re= 0.59), andf= 1.58x + 1.30 (re = 0.61) for spring, summer, autumn, and winter, respec tively, in Beijing. Here, f represents MEE, x represents I/(1-RH), and the coefficients of determination are pre sented in parentheses. Conversely, in Hong Kong, the corresponding functions are f= 1.98x- 1.40 (r^2= 0.55),f = 1.32x - 0.36 (r^2 = 0.26),f= 1.87x - 0.65 (r^2 = 0.64), and f= 2.39x - 1.47 (r^2 = 0.72), respectively. The MEE values for Hong Kong at high RHs (RH 〉 70%) are higher than those for Beijing, except in summer; this suggests that aerosols in Hong Kong are more hygroscopic than those in Beijing for the other three seasons, but the aerosol hy groscopicity is similarly high in summer over both cities. This study describes the effects of moisture on aerosol scattering extinction coefficients and provides a potential method of studying atmospheric visibility and ground level air quality using some of the optical remote sensing products of satellites.
基金supported by the National Natural Science Foundation of China(Grant Nos.51479095,41372316,and 41572295)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2015272)
文摘Soil-rock mixtures(S-RMs) are widely distributed in the nature. The mesoscopic deformation and failure mechanisms as well as the macro-mechanical behaviors of the S-RMs depend largely upon the rate of deformation, water content and particle sizes. In this research, a series of large-scale direct shear tests with different water contents and different grain-size distributions were conducted to study the influence of the aforementioned factors on the mechanical properties of the S-RMs. Due to the effect of the rock blocks' breakage in the S-RMs, the relationship between the shear strength and the vertical stress of S-RM follows a power law instead of a linear one. It is found that there exists a threshold value for the vertical stress during the shearing process,below which the soil strength is mainly determined by the inter-locking of particles and the re-arrangement of meso-structure,and otherwise large-sized rock blocks are gradually broken into smaller fragments, resulting in a decrease in the soil strength.The shear rate can also significantly influence the degree of particle breakage and the meso-structural rearrangement of the SRMs, namely, under low shear rate, the particles of the samples are fully broken resulting in enhanced macro-strength. As a result, the lower the shear rate, the higher the macroscopic strength. So under unsaturated conditions, the water content will affect the strength of the S-RMs by reducing the strength of rock blocks. As the water content increases, the soil strength decreases gradually, and assumes a moderate value when the water content reaches 8%. At the same water content, the soil strength increases with the sizes of large rock blocks. For the occlusion, breakage and structure re-arrangement of the oversized rock blocks inside S-RM, which have a huge influence on the mechanical characteristics of the samples.
基金supported by the National Natural Science Foundation of China (20735003 & 21075120)the National Basic Research Program of China (2009CB930100 & 2010CB933600)
文摘A label-free and low-cost mapping method based on SERS imaging was reported for illustrating the distribution of phospho- lipids with similar structures in binary lipid membranes on Ag nanoparticles (Ag NPs) films. The Ag NPs films exhibited strong SERS activity and good reproducibility which were investigated with p-aminothiopbenol (p-ATP) as probe molecules. Atomic force microscope (AFM) measurement proved that compact lipid membranes formed on the Ag NPs films. Basing on the Ag NPs films, the SERS spectra of phospholipids in the mixed lipid membranes were achieved and the inherent vibration of 1,2-dimyristoyl-sn-lycero-3-phosphoglycerol, sodium salt (DMPG), 1482 cm-1, was used to distinguish between DMPG and dimyristoylphosphatidylcholine (DMPC). The proportions of phospholipids in the mixed lipid membranes were represented by the intensity ratio of peaks at 1482 cm-1 and 1650 cm1 (R1482/1650) simultaneously: increasing R1482/1650 indicated higher propor- tion of DMPG and lower proportion of DMPC. SERS imaging of the lipid membranes was constructed as a combination of spacial information and the semiquantitative detection of phospholipids according to R1482/1650, which showed that the charged phospholipids, DMPG, aggregated in the hybrid lipid membranes. The presented mapping strategy based on SERS imaging carried out on Ag NPs films supplied a facile, label-free and inexpensive way for potential applications in the research on the structure of the lipid membrane, such as lipid domains and rafts.