For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor ...For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency.展开更多
There is a growing demand for hybrid supercapacitor systems to overcome the energy density limitation of existing-generation electric double layer capacitors (EDLCs), leading to next generation-Ⅱ supercapacitors wi...There is a growing demand for hybrid supercapacitor systems to overcome the energy density limitation of existing-generation electric double layer capacitors (EDLCs), leading to next generation-Ⅱ supercapacitors with minimum sacrifice in power density and cycle life. Here, an advanced graphene-based hybrid system, consisting of a graphene-inserted Li4Ti5O12 (LTO) composite anode (G-LTO) and a three-dimensional porous graphene-sucrose cathode, has been fabricated for the purpose of combining both the benefits of Li-ion batteries (energy source) and supercapacitors (power source). Graphene-based materials play a vital role in both electrodes in respect of the high performance of the hybrid supercapacitor. For example, compared with the theoretical capacity of 175 mA-h.g-1 for pure LTO, the G-LTO nanocomposite delivered excellent reversible capacities of 207, 190, and 176 mA·1h·g-1 at rates of 0.3, 0.5, and 1 C, respectively, in the potential range 1.0-2.5 V vs. Li/Li+; these are among the highest values for LTO-based nano- composites at the same rates and potential range. Based on this, an optimized hybrid supercapacitor was fabricated following the standard industry procedure; this displayed an ultrahigh energy density of 95 Wh·kg-1 at a rate of 0.4 C (2.5 h) over a wide voltage range (0-3 V), and still retained an energy density of 32 Wh·kg-1 at a high rate of up to 100 C, equivalent to a full discharge in 36 s, which is exceptionally fast for hybrid supercapacitors. The excellent performance of this Li-ion hybrid supercapacitor indicates that graphene-based materials may indeed play a significant role in next-generation supercapacitors with excellent electrochemical performance.展开更多
Aqueous hybrid supercapacitors(AHSCs)offer potential safety and eco-friendliness compared with conventional electrochemical energy storage devices that use toxic and flammable organic electrolytes.They can serve as th...Aqueous hybrid supercapacitors(AHSCs)offer potential safety and eco-friendliness compared with conventional electrochemical energy storage devices that use toxic and flammable organic electrolytes.They can serve as the bridge between aqueous batteries and aqueous supercapacitors by combining the advantages of high energy of the battery electrode and high power as well as long lifespan of the capacitive electrode.Over the past few decades,extensive research efforts have been devoted to developing advanced materials and fascinating device architectures for AHSCs.However,further development related to the compatibilities between the battery-type electrode and capacitive electrode remains stagnant mainly due to discrepancy encountered in terms of reaction kinetics and capacity.This review focuses on the recent progress made in the field of AHSCs via elucidating the main concepts on the design of battery and capacitive electrodes and emerging electrolytes.In particular,ingenious AHSCs that possess either better flexibility toward materials selection or better device functionality such as those with“dual-ion”energy storage mechanism and non-polarity feature are also discussed.Recent advances and unresolved issues in multivalent ion hybrid devices(in particular,zinc-ion AHSCs)are further outlined.Finally,future research directions and challenges for AHSCs are presented,which are anticipated to deliver higher energy and demonstrate greater multifunctionalities for more breakthrough technology applications.展开更多
Li-ion hybrid supercapacitors (Li-HECs) facilitate effective combination of the advantages of supercapacitors and Li-ion batteries (LIBs). However, challenges remain in designing and preparing suitable anode and c...Li-ion hybrid supercapacitors (Li-HECs) facilitate effective combination of the advantages of supercapacitors and Li-ion batteries (LIBs). However, challenges remain in designing and preparing suitable anode and cathode materials, which often require tedious and expensive procedures. Herein, we demonstrated that hollow N-doped carbon capsules (HNC) with and without a Fe304 nanoparticle core can respectively function as the anode and the cathode in very-high-performance Li-HECs. The Fe3Oa@NC anode exhibited a high reversible specific capacity exceeding 1530 mA h g^-1 at 100 mA g^-1 and excellent rate capability (45% capacity retention from 0.1 to 5 A g^-1) and cycle stability (〉97% retention after 100 cycles). Moreover, high rate performance was achieved in a full-cell using the HNC cathode. By combining the respective structural advantages of the components, the hybrid device with Fe3Oa@NC//HN C exhibited a remark- able energy density of 185 W h kg^-1 at a power density of 39 W kg^-1. The hybrid device furnished a battery-inaccessible power density of 28 kW kg^-1 with rapid charging/discharging within 9 s at an energy density of 95 W h kg^-1.展开更多
文摘For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency.
基金The authors gratefully acknowledge financial support from Ministry of Science and Technology of the People's Republic of China (MOST) (Grants Nos. 2012CB933401 and 2011DFB50300), and National Natural Science Foundation of China (NSFC) (Grants Nos. 50933003 and 51273093).
文摘There is a growing demand for hybrid supercapacitor systems to overcome the energy density limitation of existing-generation electric double layer capacitors (EDLCs), leading to next generation-Ⅱ supercapacitors with minimum sacrifice in power density and cycle life. Here, an advanced graphene-based hybrid system, consisting of a graphene-inserted Li4Ti5O12 (LTO) composite anode (G-LTO) and a three-dimensional porous graphene-sucrose cathode, has been fabricated for the purpose of combining both the benefits of Li-ion batteries (energy source) and supercapacitors (power source). Graphene-based materials play a vital role in both electrodes in respect of the high performance of the hybrid supercapacitor. For example, compared with the theoretical capacity of 175 mA-h.g-1 for pure LTO, the G-LTO nanocomposite delivered excellent reversible capacities of 207, 190, and 176 mA·1h·g-1 at rates of 0.3, 0.5, and 1 C, respectively, in the potential range 1.0-2.5 V vs. Li/Li+; these are among the highest values for LTO-based nano- composites at the same rates and potential range. Based on this, an optimized hybrid supercapacitor was fabricated following the standard industry procedure; this displayed an ultrahigh energy density of 95 Wh·kg-1 at a rate of 0.4 C (2.5 h) over a wide voltage range (0-3 V), and still retained an energy density of 32 Wh·kg-1 at a high rate of up to 100 C, equivalent to a full discharge in 36 s, which is exceptionally fast for hybrid supercapacitors. The excellent performance of this Li-ion hybrid supercapacitor indicates that graphene-based materials may indeed play a significant role in next-generation supercapacitors with excellent electrochemical performance.
基金supported by the National Natural Science Foundation of China(51972257,52072136 and 51872104)the National Key R&D Program of China(2016YFA0202602)the Natural Science Foundation of Hubei Province(2018CFB581).
文摘Aqueous hybrid supercapacitors(AHSCs)offer potential safety and eco-friendliness compared with conventional electrochemical energy storage devices that use toxic and flammable organic electrolytes.They can serve as the bridge between aqueous batteries and aqueous supercapacitors by combining the advantages of high energy of the battery electrode and high power as well as long lifespan of the capacitive electrode.Over the past few decades,extensive research efforts have been devoted to developing advanced materials and fascinating device architectures for AHSCs.However,further development related to the compatibilities between the battery-type electrode and capacitive electrode remains stagnant mainly due to discrepancy encountered in terms of reaction kinetics and capacity.This review focuses on the recent progress made in the field of AHSCs via elucidating the main concepts on the design of battery and capacitive electrodes and emerging electrolytes.In particular,ingenious AHSCs that possess either better flexibility toward materials selection or better device functionality such as those with“dual-ion”energy storage mechanism and non-polarity feature are also discussed.Recent advances and unresolved issues in multivalent ion hybrid devices(in particular,zinc-ion AHSCs)are further outlined.Finally,future research directions and challenges for AHSCs are presented,which are anticipated to deliver higher energy and demonstrate greater multifunctionalities for more breakthrough technology applications.
基金supported by the National Natural Science Foundation of China (51601127, 21603162 and 51671145)China Post-doctoral Science Fund (2015M581304)+1 种基金Tianjin Municipal Education Commission, Tianjin Municipal Science and Technology Commission (16ZXCLGX00120)the Fundamental Research Funds of Tianjin University of Technology
文摘Li-ion hybrid supercapacitors (Li-HECs) facilitate effective combination of the advantages of supercapacitors and Li-ion batteries (LIBs). However, challenges remain in designing and preparing suitable anode and cathode materials, which often require tedious and expensive procedures. Herein, we demonstrated that hollow N-doped carbon capsules (HNC) with and without a Fe304 nanoparticle core can respectively function as the anode and the cathode in very-high-performance Li-HECs. The Fe3Oa@NC anode exhibited a high reversible specific capacity exceeding 1530 mA h g^-1 at 100 mA g^-1 and excellent rate capability (45% capacity retention from 0.1 to 5 A g^-1) and cycle stability (〉97% retention after 100 cycles). Moreover, high rate performance was achieved in a full-cell using the HNC cathode. By combining the respective structural advantages of the components, the hybrid device with Fe3Oa@NC//HN C exhibited a remark- able energy density of 185 W h kg^-1 at a power density of 39 W kg^-1. The hybrid device furnished a battery-inaccessible power density of 28 kW kg^-1 with rapid charging/discharging within 9 s at an energy density of 95 W h kg^-1.