期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于神经网络的车辆主减速器混合遗传算法优化设计 被引量:1
1
作者 苏俊 习平原 《机械设计与制造》 北大核心 2011年第2期42-44,共3页
车辆驱动桥的组成包括主减速器、差速器和半轴,其中汽车主减速器的结构和尺寸极大的影响着汽车的动力学性能和经济性,因此采用优化设计方法来设计汽车主减速器是非常重要的。在满足主减速器接触强度、弯曲强度和边界约束的条件下,建立... 车辆驱动桥的组成包括主减速器、差速器和半轴,其中汽车主减速器的结构和尺寸极大的影响着汽车的动力学性能和经济性,因此采用优化设计方法来设计汽车主减速器是非常重要的。在满足主减速器接触强度、弯曲强度和边界约束的条件下,建立了优化设计数学模型。由于传统的优化方法存在着求解过程复杂和寻优过程容易陷入局部最优解的问题,故通过神经网络方法拟合待求系数,应用遗传算法工具箱调用混合遗传算法寻求最优解,使求解过程得到简化,确保可靠地获得全局最优解。 展开更多
关键词 车辆主减速器 神经网络 混合遗传优化
下载PDF
基于混合遗传鲸鱼优化算法的柔性作业车间自动导引车融合调度方法 被引量:21
2
作者 李西兴 杨道明 +1 位作者 李鑫 吴锐 《中国机械工程》 EI CAS CSCD 北大核心 2021年第8期938-950,986,共14页
针对柔性作业车间调度问题,考虑自动导引车(AGV)在车间制造过程中只参与装卸和搬运工作,提出一种实现AGV路径规划与柔性作业车间调度集成优化的融合调度模型。采用基于工序排序与机器选择两个子问题的二维向量编码方案,并在解码过程中... 针对柔性作业车间调度问题,考虑自动导引车(AGV)在车间制造过程中只参与装卸和搬运工作,提出一种实现AGV路径规划与柔性作业车间调度集成优化的融合调度模型。采用基于工序排序与机器选择两个子问题的二维向量编码方案,并在解码过程中提出基于最先服务原则的AGV安排策略。对鲸鱼优化算法进行离散化改进,针对性地设计了多种种群初始化策略,引入遗传算法的交叉、变异操作以提升鲸鱼优化算法的全局搜索能力,并嵌入局部搜索算法以达到全局搜索和局部搜索的平衡,构建了一种混合遗传鲸鱼优化算法(HGWOA)来求解该融合调度模型。通过经典测试算例验证了算法性能,并使用正交试验优化了算法参数。研究结果表明,HGWOA算法用于求解柔性作业车间AGV融合调度问题可以获得较好的效果。 展开更多
关键词 柔性作业车间调度 自动导引车 混合遗传鲸鱼优化算法 遗传算法 局部搜索策略
下载PDF
复杂弹性耦合隔振系统建模及其优化设计 被引量:3
3
作者 吴广明 沈荣瀛 +1 位作者 韦凌云 华宏星 《振动与冲击》 EI CSCD 北大核心 2005年第4期69-73,共5页
复杂弹性耦合隔振系统是在多层隔振系统中考虑中间筏体和基础的弹性而形成的一类隔振系统,提出了关于这类复杂隔振系统子结构建模的新方法,并用该方法建立了二维复杂弹性耦合隔振系统的动力学方程。并在此基础上进一步提出了一种新的基... 复杂弹性耦合隔振系统是在多层隔振系统中考虑中间筏体和基础的弹性而形成的一类隔振系统,提出了关于这类复杂隔振系统子结构建模的新方法,并用该方法建立了二维复杂弹性耦合隔振系统的动力学方程。并在此基础上进一步提出了一种新的基于小生境的自适应遗传优化算法,运用该算法对二维复杂弹性耦合隔振系统基于系统功率流传递的最优化设计。 展开更多
关键词 复杂弹性耦合隔振系统 混合遗传优化算法 功率流
下载PDF
炮射导弹控制系统的多目标二级优化设计
4
作者 谢晓竹 刘藻珍 《北京理工大学学报》 EI CAS CSCD 北大核心 2008年第10期875-879,共5页
建立了炮射导弹多目标二级优化模型,提出了多目标二级混合遗传优化算法.对第一级多目标函数引入Lagrange乘子向量作为协调变量,采用两级递阶协调法实现多目标的第一级优化;针对遗传算法局部优化性能较差的缺点,将遗传算法与模式搜索法... 建立了炮射导弹多目标二级优化模型,提出了多目标二级混合遗传优化算法.对第一级多目标函数引入Lagrange乘子向量作为协调变量,采用两级递阶协调法实现多目标的第一级优化;针对遗传算法局部优化性能较差的缺点,将遗传算法与模式搜索法相结合,采用改进的遗传算法实现了多目标的第二级优化.仿真结果表明,所提出的多目标二级混合遗传优化算法收敛速度快,所设计的控制系统性能优于基于权重系数变换法的遗传算法的效果. 展开更多
关键词 导弹制导控制系统 多目标二级优化 混合遗传优化算法
下载PDF
相控阵雷达搜索和跟踪资源博弈分配策略 被引量:1
5
作者 刘一鸣 盛文 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第10期1883-1891,共9页
为了解决搜索和跟踪(SAT)资源分配(RA)实时性的问题,提出博弈论视角下的资源分配策略.建立搜索与跟踪的系统模型,将SATRA建模为非合作博弈问题,将模型中搜索子空域和跟踪多目标间的资源分配问题看作合作博弈关系,利用Shapley值完成相应... 为了解决搜索和跟踪(SAT)资源分配(RA)实时性的问题,提出博弈论视角下的资源分配策略.建立搜索与跟踪的系统模型,将SATRA建模为非合作博弈问题,将模型中搜索子空域和跟踪多目标间的资源分配问题看作合作博弈关系,利用Shapley值完成相应资源的分配,给出纳什均衡求解的双目标优化模型;为了快速找到符合决策者偏好的分配解,将双目标优化模型通过动态加权的理想点法转化为单目标优化问题,提出并行混合遗传粒子群优化(PHGAPSO)算法求解上述优化问题最优分配方案,仿真验证了博弈分配策略的有效性和先进性以及混合算法性能的优越性.在相同的条件下,与帕累托双目标优化方法进行对比.实验结果表明,博弈论的方法具有更高的灵活性,平均搜索信噪比提高了1.02%,平均跟踪目标误差降低了1.55%. 展开更多
关键词 相控阵雷达 搜索与跟踪 资源分配 博弈策略 SHAPLEY值 纳什均衡 混合遗传粒子群优化
下载PDF
An Improved Hybrid Genetic Algorithm for Chemical Plant Layout Optimization with Novel Non-overlapping and Toxic Gas Dispersion Constraints 被引量:8
6
作者 徐圆 王振宇 朱群雄 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期412-419,共8页
New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In... New approaches for facility distribution in chemical plants are proposed including an improved non-overlapping constraint based on projection relationships of facilities and a novel toxic gas dispersion constraint. In consideration of the large number of variables in the plant layout model, our new method can significantly reduce the number of variables with their own projection relationships. Also, as toxic gas dispersion is a usual incident in a chemical plant, a simple approach to describe the gas leakage is proposed, which can clearly represent the constraints of potential emission source and sitting facilities. For solving the plant layout model, an improved genetic algorithm (GA) based on infeasible solution fix technique is proposed, which improves the globe search ability of GA. The case study and experiment show that a better layout plan can be obtained with our method, and the safety factors such as gas dispersion and minimum distances can be well handled in the solution. 展开更多
关键词 plant layout non-overlapping constraints toxic gas dispersion genetic algorithm
下载PDF
Optimization of projectile aerodynamic parameters based on hybrid genetic algorithm
7
作者 刘霖 田晓丽 +2 位作者 高小东 甘桃元 佘新继 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期364-367,共4页
Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameter... Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameters of projectile. By combining the traditional simulated annealing method that is easy to fall into local optimum solution but hard to get global parameters with the genetic algorithm that has good global optimization ability but slow local optimization ability, the hybrid genetic algo- rithm makes full use of the advantages of the two algorithms for the optimization of projectile aerodynamic parameters. The simulation results show that the hybrid genetic algorithm is better than a single algorithm. 展开更多
关键词 projectile aerodynamic parameters parameter optimization hybrid genetic algorithm
下载PDF
An optimizing algorithm of static task scheduling problem based on hybrid genetic algorithm 被引量:3
8
作者 柳玉 Song Jian Wen Jiayan 《High Technology Letters》 EI CAS 2016年第2期170-176,共7页
To reduce resources consumption of parallel computation system, a static task scheduling opti- mization method based on hybrid genetic algorithm is proposed and validated, which can shorten the scheduling length of pa... To reduce resources consumption of parallel computation system, a static task scheduling opti- mization method based on hybrid genetic algorithm is proposed and validated, which can shorten the scheduling length of parallel tasks with precedence constraints. Firstly, the global optimal model and constraints are created to demonstrate the static task scheduling problem in heterogeneous distributed computing systems(HeDCSs). Secondly, the genetic population is coded with matrix and used to search the total available time span of the processors, and then the simulated annealing algorithm is introduced to improve the convergence speed and overcome the problem of easily falling into local minimum point, which exists in the traditional genetic algorithm. Finally, compared to other existed scheduling algorithms such as dynamic level scheduling ( DLS), heterogeneous earliest finish time (HEFr), and longest dynamic critical path( LDCP), the proposed approach does not merely de- crease tasks schedule length, but also achieves the maximal resource utilization of parallel computa- tion system by extensive experiments. 展开更多
关键词 genetic algorithm simulated annealing algorithm parallel computation directedacyelic graph
下载PDF
A ROBUST PHASE-ONLY DIRECT DATA DOMAIN ALGORITHM BASED ON GENERALIZED RAYLEIGH QUOTIENT OPTIMIZATION USING HYBRID GENETIC ALGORITHM 被引量:2
9
作者 Shao Wei Qian Zuping Yuan Feng 《Journal of Electronics(China)》 2007年第4期560-566,共7页
A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency ... A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA. 展开更多
关键词 Generalized Rayleigh quotient Hybrid genetic algorithm Phase-only optimization Direct Data Domain Least Squares (D^3LS) algorithm Nelder-Mead simplex algorithm
下载PDF
Hybrid genetic algorithm for the optimization of mine ventilation network 被引量:1
10
作者 ZHAO Dan LIU Jian +1 位作者 PAN Jing-tao MA Heng 《Journal of Coal Science & Engineering(China)》 2009年第4期389-393,共5页
Used genetic algorithm (GA) to optimize the network of ventilation in order toavoid artificial convergence and speed up the convergence rate to introduce the Powellalgorithm. The Powell algorithm had been integrated i... Used genetic algorithm (GA) to optimize the network of ventilation in order toavoid artificial convergence and speed up the convergence rate to introduce the Powellalgorithm. The Powell algorithm had been integrated into GA. Powell had the effectivecapacity of solving the local optimal solution. Powell and the cross as a method ofchoice, a variation of the parallel operator, can be a better solution to the prematureconvergence of the GA problem. The two methods will be improved to make it an effective combination of hybrid GA called hybrid genetic algorithm (HGA) for the introductionof mine ventilation network optimization and to be used to solve the problem of regulating mine optimization. 展开更多
关键词 HYBRID genetic algorithm(GA) Powell algorithm ventilation net-work optimization
下载PDF
A Hybrid Improved Genetic Algorithm and Its Application in Dynamic Optimization Problems of Chemical Processes 被引量:5
11
作者 SUN Fan DU Wenli QI Rongbin QIAN Feng ZHONG Weimin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第2期144-154,共11页
The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient ... The solutions of dynamic optimization problems are usually very difficult due to their highly nonlinear and multidimensional nature. 13enetic algorithm (GA) has been proved to be a teasibte method when the gradient is difficult to calculate. Its advantage is that the control profiles at all time stages are optimized simultaneously, but its convergence is very slow in the later period of evolution and it is easily trapped in the local optimum. In this study, a hybrid improved genetic algorithm (HIGA) for solving dynamic optimization problems is proposed to overcome these defects. Simplex method (SM) is used to perform the local search in the neighborhood of the optimal solution. By using SM, the ideal searching direction of global optimal solution could be found as soon as possible and the convergence speed of the algorithm is improved. The hybrid algorithm presents some improvements, such as protecting the best individual, accepting immigrations, as well as employing adaptive crossover and Ganssian mutation operators. The efficiency of the proposed algorithm is demonstrated by solving several dynamic optimization problems. At last, HIGA is applied to the optimal production of secreted protein in a fed batch reactor and the optimal feed-rate found by HIGA is effective and relatively stable. 展开更多
关键词 genetic algorithm simplex method dynamic optimization chemical process
下载PDF
Hybrid optimization model of product concepts
12
作者 薛立华 李永华 《Journal of Central South University of Technology》 EI 2006年第1期105-109,共5页
Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating... Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms. 展开更多
关键词 conceptual design morphological matrix genetic algorithm neural network hybrid optimization model
下载PDF
相控阵雷达长时跟踪波束调度与波形优化策略 被引量:2
13
作者 刘一鸣 盛文 +1 位作者 胡冰 张磊 《航空学报》 EI CAS CSCD 北大核心 2020年第3期263-273,共11页
针对相控阵雷达多目标跟踪波束调度和波形参数优化控制的问题,本文提出了一种基于马尔可夫决策过程(MDP)的相控阵雷达跟踪波束调度与波形参数优化策略,该方法以无迹卡尔曼滤波(UKF)算法为基础来估计目标的状态。首先将本文的序列决策问... 针对相控阵雷达多目标跟踪波束调度和波形参数优化控制的问题,本文提出了一种基于马尔可夫决策过程(MDP)的相控阵雷达跟踪波束调度与波形参数优化策略,该方法以无迹卡尔曼滤波(UKF)算法为基础来估计目标的状态。首先将本文的序列决策问题建模为马尔可夫决策过程,定义了资源的效费比和长期回报率,然后与当前实际跟踪误差综合考虑作为MDP的回报函数,进而给出了调度的优化模型,最后将长时决策问题转化为动态规划算法结构进行求解,并且提出了一种并行混合遗传粒子群优化算法来求解各决策时刻的最优策略。仿真结果表明了长时策略的先进性以及寻优算法的优越性,与传统的短时策略相比,跟踪精度可提高11.17%。 展开更多
关键词 相控阵雷达 波束调度 波形参数优化 马尔可夫决策过程 无迹卡尔曼滤波(UKF) 长期回报率 混合遗传粒子群优化
原文传递
小型无人机气动参数辨识的新型HGAPSO算法 被引量:10
14
作者 邵干 张曙光 唐鹏 《航空学报》 EI CAS CSCD 北大核心 2017年第4期44-54,共11页
针对小型无人机(UAVs)研制中操稳特性和飞行控制律设计评估对气动参数辨识的需求,提出了一种混合遗传粒子群优化算法(HGAPSO)。该算法以粒子群优化算法(PSO)为主体,在粒子优化路径中,引入遗传算法(GA)的交叉变异操作,增强粒子群跳出局... 针对小型无人机(UAVs)研制中操稳特性和飞行控制律设计评估对气动参数辨识的需求,提出了一种混合遗传粒子群优化算法(HGAPSO)。该算法以粒子群优化算法(PSO)为主体,在粒子优化路径中,引入遗传算法(GA)的交叉变异操作,增强粒子群跳出局部最优的能力;同时采用Kent映射改进粒子种群的初始化,使初始种群在可行解空间内分布更加均匀,增强全局优化能力。基于仿真结果,依据辨识准度及辨识成功率,对比了HGAPSO、常规PSO和GA优化算法气动参数辨识的结果,然后用蒙特卡洛仿真测试随机观测噪声的影响,结果表明该算法兼备PSO算法高的搜索效率和GA算法的全局优化能力,对随机观测噪声不敏感。最后,通过设计小型UAV试飞示例进行综合应用评价,结果表明:HGAPSO算法基于真实试飞数据进行气动参数辨识取得了满意结果,具有良好的实用性。 展开更多
关键词 小型无人机 气动参数 参数辨识 混合遗传粒子群优化算法(HGAPSO) 搜索效率 全局优化
原文传递
车用燃料电池系统建模及参数辨识 被引量:3
15
作者 叶宗俊 戴海峰 +1 位作者 袁浩 陈金干 《机电一体化》 2020年第3期18-26,共9页
高效可靠的控制单元是燃料电池高性能、长寿命工作的关键,而一个可以准确描述燃料电池动态特性的系统模型则是控制策略实施的前提。针对燃料电池系统的空气供给系统,介绍了一种由阴极腔体和各辅助组件组成的集总参数动态模型,基于工况... 高效可靠的控制单元是燃料电池高性能、长寿命工作的关键,而一个可以准确描述燃料电池动态特性的系统模型则是控制策略实施的前提。针对燃料电池系统的空气供给系统,介绍了一种由阴极腔体和各辅助组件组成的集总参数动态模型,基于工况数据利用非线性最小二乘法对模型进行参数辨识;同时,建立燃料电池输出电压模型,采用混合遗传粒子群优化算法辨识电压模型参数,最终实验证明模型稳态输出误差在4%以内,可满足在线反馈控制应用。 展开更多
关键词 质子交换膜燃料电池系统模型 参数辨识 混合遗传粒子群优化算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部