期刊文献+
共找到211篇文章
< 1 2 11 >
每页显示 20 50 100
基于层次分解、主成分分析和高斯混合模型的火成岩岩性识别——以惠州26洼古潜山为例
1
作者 高楚桥 詹旺 +1 位作者 赵彬 程鑫财 《长江大学学报(自然科学版)》 2024年第2期36-44,共9页
火成岩油气成藏规律复杂,受到火山运动、强构造运动以及风化剥蚀等叠加影响,火成岩的化学成分和结构构造复杂多样,非均质性极强,采用常规岩性识别方法难以一次性将所有岩性准确识别。借鉴层次分解思路,以惠州26洼古潜山为例,提出了一种... 火成岩油气成藏规律复杂,受到火山运动、强构造运动以及风化剥蚀等叠加影响,火成岩的化学成分和结构构造复杂多样,非均质性极强,采用常规岩性识别方法难以一次性将所有岩性准确识别。借鉴层次分解思路,以惠州26洼古潜山为例,提出了一种火成岩岩性测井识别分类方法:综合考虑火成岩地质分类原则和测井响应特征来确定岩性识别层级,基于这种层次性的分类原则,在每一层次定量优选岩性识别敏感参数,建立研究区岩性识别优选层级;在明确岩性识别优选层级的基础上,逐级逐次使用主成分分析(PCA)和高斯混合模型(GMM)对岩性进行判别并确定其计算函数,建立分级优选岩性识别模型,最终达到整体岩性区分的目的。研究结果表明,研究区辉绿岩和闪长岩识别正确率分别为87.31%和84.32%,未分级未优选辉绿岩和闪长岩识别正确率为60.45%和54.88%,分级未优选其岩性识别正确率为69.61%和67.04%,有效提高了研究区的复杂岩性识别精度。该方法的提出对提高火成岩岩性识别精度提供了一种思路,也为研究区古潜山火成岩岩性精确识别提供了参考依据。 展开更多
关键词 火成岩 岩性识别 层次分解法 成分分析 高斯混合模型
下载PDF
基于结构相似度和鲁棒主成分分析的运动目标检测 被引量:1
2
作者 杜延墨 沈三民 张炳玮 《激光杂志》 CAS 北大核心 2024年第2期54-57,共4页
运动目标传统检测方法只考虑图像的亮度或纹理等某一种特性,受特异值影响较大,对噪声比较敏感,鲁棒性也不够好,而且背景恢复精度不高。针对以上局限性,提出一种融合结构相似度(structural similarity,SSIM)全参考模型和鲁棒主成分分析(r... 运动目标传统检测方法只考虑图像的亮度或纹理等某一种特性,受特异值影响较大,对噪声比较敏感,鲁棒性也不够好,而且背景恢复精度不高。针对以上局限性,提出一种融合结构相似度(structural similarity,SSIM)全参考模型和鲁棒主成分分析(robust principal component analysis,RPCA)的运动目标检测方法。此方法综合考虑图像的亮度、对比度和结构三种特性,不采用传统的背景减除法,而是把图像像素点的结构相似度作为度量来实现运动对象与背景的分离。实验结果表明,此方法准确率可达0.95,且F度量较传统运动目标检测算法平均提升0.15,总体上比传统方法更具优势。 展开更多
关键词 运动目标检测 背景恢复 成分分析 结构相似度
下载PDF
矩阵数据基于鲁棒主成分分析的距离加权判别分析
3
作者 葛焌迟 赵为华 《计算机应用》 CSCD 北大核心 2024年第7期2073-2079,共7页
距离加权判别(DWD)是一种已被广泛应用的矩阵数据分类模型,当数据中存在严重的噪声污染时,该模型的性能会明显下降。鲁棒主成分分析(RPCA)因具备分离数据矩阵低秩结构和稀疏部分的特性已成为解决该问题的有效手段之一。因此,提出一种矩... 距离加权判别(DWD)是一种已被广泛应用的矩阵数据分类模型,当数据中存在严重的噪声污染时,该模型的性能会明显下降。鲁棒主成分分析(RPCA)因具备分离数据矩阵低秩结构和稀疏部分的特性已成为解决该问题的有效手段之一。因此,提出一种矩阵数据鲁棒距离加权判别(RDWD-2D)模型。特别地,该模型以有监督的方式对数据矩阵进行鲁棒主成分分析,并同步实现干净数据的恢复与分类。在MNIST和COIL20数据集上的实验结果表明,针对有噪声污染或数据缺失的矩阵数据,与DWD-2D、RPCA+DWD等模型相比,RDWD-2D模型有最好的数据恢复能力和最高的分类准确率;同时RDWD-2D模型对于数据污染度也有较好的鲁棒性。 展开更多
关键词 分类模型 距离加权判别(DWD) 矩阵数据 成分分析(PCA)
下载PDF
基于增强的鲁棒主成分分析的脉冲噪声去除算法
4
作者 陈桐 纪航 +2 位作者 王晓东 徐晔 陆昱 《计算机应用文摘》 2024年第10期88-91,共4页
脉冲噪声的去除对提高图像的视觉质量和后续的图像分析具有重要意义。为了提高脉冲噪声的去噪性能并保留图像边缘细节,文章提出了一种新的基于鲁棒主成分分析的图像去噪算法。通过参数化对数函数逼近秩函数来增强低秩项,该算法能够保留... 脉冲噪声的去除对提高图像的视觉质量和后续的图像分析具有重要意义。为了提高脉冲噪声的去噪性能并保留图像边缘细节,文章提出了一种新的基于鲁棒主成分分析的图像去噪算法。通过参数化对数函数逼近秩函数来增强低秩项,该算法能够保留更多分布于较大奇异值上的边缘结构信息。与现有几种先进的去噪算法进行比较,文章提出的算法在客观数值和主观视觉方面均有令人满意的效果,可在移除脉冲噪声的同时充分保留图像的边缘特征。 展开更多
关键词 脉冲噪声 成分分析 对数函数 低秩
下载PDF
秩约束的快速鲁棒主成分分析算法及应用
5
作者 何锐 徐正勤 +1 位作者 伍世虔 贾蒙 《电子学报》 EI CAS CSCD 北大核心 2023年第6期1448-1457,共10页
鲁棒主成分分析被广泛应用于计算机视觉领域,然而现有鲁棒主成分分析方法难以针对各种场景准确分离出低秩信息,而且计算成本高导致算法的实时性不足.针对这两个问题,本文提出了一种新型鲁棒主成分分析算法.一方面基于先验秩信息提出了... 鲁棒主成分分析被广泛应用于计算机视觉领域,然而现有鲁棒主成分分析方法难以针对各种场景准确分离出低秩信息,而且计算成本高导致算法的实时性不足.针对这两个问题,本文提出了一种新型鲁棒主成分分析算法.一方面基于先验秩信息提出了低秩约束改进模型,提高算法在不同场景中的泛化性能;另一方面引入了黎曼优化理论,将目标矩阵投影到低维子空间上求解,减少算法的运算复杂度.各种实验结果表明,与现有算法相比,改进算法在速度上有非常大的优势,同时能够保证稳定的恢复能力. 展开更多
关键词 成分分析 计算机视觉 黎曼优化
下载PDF
基于主成分分析和深度自编码高斯混合模型的无监督异常数据检测方法研究 被引量:2
6
作者 刘翔宇 朱诗兵 杨帆 《现代电子技术》 2023年第3期75-80,共6页
在异常数据检测中,由于数据量过大和数据特征维度过高,往往会导致数据标定困难、数据冗余、算法效率降低等。针对以上问题,将主成分分析(PCA)特征选择算法与深度自编码高斯混合模型(DAGMM)相结合,提出一种新的无监督异常数据检测方法PCA... 在异常数据检测中,由于数据量过大和数据特征维度过高,往往会导致数据标定困难、数据冗余、算法效率降低等。针对以上问题,将主成分分析(PCA)特征选择算法与深度自编码高斯混合模型(DAGMM)相结合,提出一种新的无监督异常数据检测方法PCA-DAGMM。该方法首先利用PCA特征选择算法对数据进行预处理,去除对分类效果增益较小的冗余数据,降低运算成本;然后将特征选择后的数据输入到DAGMM模型中进行训练。基于kddcup99数据集和CIC-IDS-2017数据集进行实验,并与多种特征选择算法进行对比,实验结果表明,PCA-DAGMM方法可以有效优化分类器性能,提高分类器训练效率,适用于解决网络流量异常检测问题,F1指数在kddcup99数据集和CIC-IDS-2017数据集上比DAGMM模型分别提高了4.37%和1.06%,训练时间减少了14.43%和8%。 展开更多
关键词 无监督异常数据检测 成分分析 特征选择 深度自编码高斯混合模型 密度估计 联合训练
下载PDF
基于鲁棒主成分分析和MFCC反复结构的歌声分离方法
7
作者 熊天 张天骐 +1 位作者 闻斌 吴超 《声学技术》 CSCD 北大核心 2023年第6期794-803,共10页
针对单一传统方法对歌声分离不彻底的问题,文章提出了一种基于鲁棒主成分分析(Robust Principal Component Analysis,RPCA)和梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficients,MFCC)反复结构的两步歌声伴奏分离模型。该模型有效... 针对单一传统方法对歌声分离不彻底的问题,文章提出了一种基于鲁棒主成分分析(Robust Principal Component Analysis,RPCA)和梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficients,MFCC)反复结构的两步歌声伴奏分离模型。该模型有效地改善了鲁棒主成分分析对歌声分离不完全和梅尔频率倒谱系数反复结构歌声在低频处分离不佳的问题。首先使用鲁棒主成分分析将混合音乐信号分解为低秩矩阵和稀疏矩阵,然后分别对其提取梅尔频率倒谱系数特征参数并且对其进行相似运算,构建相似矩阵及建立梅尔频率倒谱系数反复结构模型并通过反复结构模型分别得到低秩矩阵和稀疏矩阵相关的掩蔽矩阵,最后根据构建的掩蔽矩阵模型以及傅里叶逆变换得到背景音乐和歌声。在公开数据集上进行了实验,实验结果表明本文算法在歌声分离性能上与比较算法相比,平均信号干扰比值最高有接近7 dB的提高。 展开更多
关键词 成分分析(RPCA) 梅尔频率倒谱系数(MFCC) 歌声伴奏分离 反复结构
下载PDF
基于混合高斯模型和主成分分析的轨迹分析行为识别方法 被引量:15
8
作者 田国会 尹建芹 +1 位作者 闫云章 李国栋 《电子学报》 EI CAS CSCD 北大核心 2016年第1期143-149,共7页
针对家庭辅助生活应用场景下的目标意图识别和异常行为判别问题,提出了一种基于目标轨迹的行为分析方法.首先,提出了关键点和关键区域的概念,将家庭环境划分为不同的关键点和关键区域,并以此来描述和区分不同轨迹;然后,提出了利用混合... 针对家庭辅助生活应用场景下的目标意图识别和异常行为判别问题,提出了一种基于目标轨迹的行为分析方法.首先,提出了关键点和关键区域的概念,将家庭环境划分为不同的关键点和关键区域,并以此来描述和区分不同轨迹;然后,提出了利用混合高斯模型的关键点及关键区域获取算法,将轨迹转化为关键点及关键区域表示,并以此为基础进行了行为意图的识别和部分异常轨迹的判断;最后,借助主成分分析的方法弥补混合高斯聚类在异常轨迹识别方面的缺陷,提高了识别准确率.实验表明,该方法能够有效的对行为意图和异常行为进行识别. 展开更多
关键词 意图识别 异常行为检测 轨迹分析 混合高斯聚类 成分分析
下载PDF
基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术 被引量:11
9
作者 刘哲 徐涛 +1 位作者 宋余庆 徐春艳 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第5期1614-1620,共7页
针对传统的图像处理是以单个像素点为基础进行融合而忽略了信息的相似性以及存在信息丢失的问题,提出了基于非下采样Contourlet变换(Nonsubsampled contourlet transform,NSCT)和相似信息鲁棒主成分分析(Robust principle component ana... 针对传统的图像处理是以单个像素点为基础进行融合而忽略了信息的相似性以及存在信息丢失的问题,提出了基于非下采样Contourlet变换(Nonsubsampled contourlet transform,NSCT)和相似信息鲁棒主成分分析(Robust principle component analysis,RPCA)模型的图像融合技术。首先对源图像获取图像块构造初始矩阵,通过对构造矩阵进行NSCT分解获得高频和低频部分,利用提出的具有相似信息低秩矩阵模型将低频成分分解成低秩矩阵和稀疏误差矩阵,再分别对两幅图像的低秩矩阵、稀疏误差矩阵及高频成分采用绝对值最大法融合规则进行融合,最后通过逆变换得到融合图像。MRI和CT的脑部图像的实验分析结果表明,本文算法可以更好地保留源图像中的边缘和纹理信息。 展开更多
关键词 图像处理 图像融合 非下采样CONTOURLET变换 成分分析 低秩矩阵
下载PDF
多线性鲁棒主成分分析 被引量:7
10
作者 史加荣 周水生 郑秀云 《电子学报》 EI CAS CSCD 北大核心 2014年第8期1480-1486,共7页
鲁棒主成分分析(RPCA)是恢复低秩与稀疏成分的一种非常有效的方法.本文将RPCA推广到张量情形,提出了多线性鲁棒主成分分析(MRPCA)框架.首先建立了MRPCA模型,即最小化张量核范数与l1范数的加权组合.然后使用增广拉格朗日乘子法求解上述... 鲁棒主成分分析(RPCA)是恢复低秩与稀疏成分的一种非常有效的方法.本文将RPCA推广到张量情形,提出了多线性鲁棒主成分分析(MRPCA)框架.首先建立了MRPCA模型,即最小化张量核范数与l1范数的加权组合.然后使用增广拉格朗日乘子法求解上述张量核范数优化问题.实验结果证实:对于具有多线性结构的数据,MRPCA比RPCA更加鲁棒. 展开更多
关键词 多线性成分分析 成分分析 低秩 核范数最小化 增广拉格朗日乘子法
下载PDF
基于鲁棒主成分分析的红外图像小目标检测 被引量:12
11
作者 王忠美 杨晓梅 顾行发 《兵工学报》 EI CAS CSCD 北大核心 2016年第9期1753-1760,共8页
鲁棒的小目标检测是红外目标搜索与跟踪的关键技术,提出一种改进的单帧红外图像小目标检测算法。该方法将原始红外图像通过预处理变换到新的红外块图像模式,在红外块图像上,将红外图像小目标检测问题转换为低秩矩阵和稀疏矩阵分离的鲁... 鲁棒的小目标检测是红外目标搜索与跟踪的关键技术,提出一种改进的单帧红外图像小目标检测算法。该方法将原始红外图像通过预处理变换到新的红外块图像模式,在红外块图像上,将红外图像小目标检测问题转换为低秩矩阵和稀疏矩阵分离的鲁棒主成分分析(RPCA)问题。考虑到红外图像中噪声和杂波的存在,用交替方向方法求解带噪声的RPCA问题,获得稀疏目标图像,并对获得的稀疏目标图像采用简单的图像分割算法进行目标检测。对空天、海天、天云、海面4种不同场景的红外图像小目标检测,进行仿真实验,结果验证了所提出算法的有效性。 展开更多
关键词 兵器科学与技术 红外图像 小目标检测 块图像模型 低秩矩阵恢复 成分分析
下载PDF
用于无监督语音降噪的听觉感知鲁棒主成分分析法 被引量:4
12
作者 闵刚 邹霞 +2 位作者 韩伟 张雄伟 谭薇 《声学学报》 EI CSCD 北大核心 2017年第2期246-256,共11页
针对现有稀疏低秩分解语音降噪方法对人耳听觉感知特性应用不充分、语音失真易被感知的问题,提出了一种用于语音降噪的听觉感知鲁棒主成分分析法。由于耳蜗基底膜对于频率感知具有非线性特性,该方法采用耳蜗谱图作为语噪分离的基础。此... 针对现有稀疏低秩分解语音降噪方法对人耳听觉感知特性应用不充分、语音失真易被感知的问题,提出了一种用于语音降噪的听觉感知鲁棒主成分分析法。由于耳蜗基底膜对于频率感知具有非线性特性,该方法采用耳蜗谱图作为语噪分离的基础。此外,选用符合人耳听觉感知特性的板仓-斋田距离度量作为优化目标函数,在稀疏低秩建模过程中引入非负约束以使分解分量更符合实际物理含义,并在交替方向乘子法框架下推导了具有闭合解形式的迭代优化算法。文中方法在语音降噪时是完全无监督的,无需预先训练语音或噪声模型。多种类型噪声和不同信噪比条件下的仿真实验验证了该方法的有效性,噪声抑制效果较目前同类算法更为显著,且降噪后语音的可懂度和总体质量有所提高、至少相当。 展开更多
关键词 成分分析 语音降噪 听觉感知 监督 迭代优化算法 优化目标函数 噪声模型
下载PDF
基于快速稀疏低秩和鲁棒主成分分析的图像处理算法的研究 被引量:7
13
作者 郑宝玉 李昂 《信号处理》 CSCD 北大核心 2020年第2期290-296,共7页
实际的稀疏低秩处理图像过程中,在视觉显示效果没有很大的差异的情况下,算法的时间复杂度是唯一的一个评价指标。我们发现快速交替极小化(FAST PCP)和鲁棒主成分分析(RPCA)的结合是比较快速、比较有效的利用CPU的高效稀疏低秩处理图像... 实际的稀疏低秩处理图像过程中,在视觉显示效果没有很大的差异的情况下,算法的时间复杂度是唯一的一个评价指标。我们发现快速交替极小化(FAST PCP)和鲁棒主成分分析(RPCA)的结合是比较快速、比较有效的利用CPU的高效稀疏低秩处理图像的方法,并且在无法保证计算机配置的情况下,其运算速度也是最快的。在课题中,将Steffensen迭代法用于改进FAST PCP,由此得到的结果较普通版本的FAST PCP和RPCA更加好。 展开更多
关键词 快速交替极小化 成分分析 稀疏低秩 图像处理
下载PDF
基于鲁棒主成分分析的智能电网虚假数据注入攻击 被引量:14
14
作者 田继伟 王布宏 尚福特 《计算机应用》 CSCD 北大核心 2017年第7期1943-1947,1971,共6页
基于主成分分析(PCA)的盲攻击策略仅对具有高斯噪声的测量数据有效,在存在异常值的情况下,上述攻击策略将被传统的坏数据检测模块检测。针对异常值存在的问题,提出一种基于鲁棒主成分分析(RPCA)的盲攻击策略。首先,攻击者收集含有异常... 基于主成分分析(PCA)的盲攻击策略仅对具有高斯噪声的测量数据有效,在存在异常值的情况下,上述攻击策略将被传统的坏数据检测模块检测。针对异常值存在的问题,提出一种基于鲁棒主成分分析(RPCA)的盲攻击策略。首先,攻击者收集含有异常值的测量数据;然后,通过基于交替方向法(ADM)的稀疏优化技术从含有异常值的测量数据中分离出异常值和真实的测量数据;其次,对真实测量数据进行PCA,得到系统的相关信息;最后,利用获得的系统信息构造攻击向量,并根据得到的攻击向量注入虚假数据。该攻击策略在IEEE 14-bus系统上进行了测试,实验结果表明,在异常值存在的情况下,传统的基于PCA的攻击方法将被坏数据检测模块检测,而所提方法基于鲁棒PCA的攻击策略能够躲避坏数据检测模块的检测。该策略使得在异常值存在的情况下虚假数据注入攻击(FDIA)仍然能够成功实施。 展开更多
关键词 虚假数据注入攻击 成分分析 交替方向法 坏数据检测 状态估计
下载PDF
一种鲁棒的概率主成分分析方法 被引量:3
15
作者 穆向阳 张太镒 周亚同 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第10期1217-1220,共4页
针对传统主成分对实际样本的奇点不敏感的缺陷,提出了一种鲁棒概率主成分分析(RPP-CA)方法.首先引入连续的决策变量构造新能量函数,将事先给定的硬门限改为自适应确定的软门限,门限值由样本自动确定,再计算概率主成分进行特征提取.与线... 针对传统主成分对实际样本的奇点不敏感的缺陷,提出了一种鲁棒概率主成分分析(RPP-CA)方法.首先引入连续的决策变量构造新能量函数,将事先给定的硬门限改为自适应确定的软门限,门限值由样本自动确定,再计算概率主成分进行特征提取.与线性主成分分析(LPCA)和概率主成分分析(PPCA)方法相比,RPPCA方法更为实用,有效地减小了奇点的影响,显示出比PPCA更强的稳健性,也扩大了实用范围.实验结果表明,RPPCA方法的分类准确率比LPCA方法平均提高了3.2%,比PPCA方法平均提高了0.7%. 展开更多
关键词 成分 概率成分分析 特征提取
下载PDF
基于鲁棒主成分分析的人脸子空间重构方法 被引量:15
16
作者 江明阳 封举富 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第6期761-765,共5页
子空间方法是人脸识别中的经典方法,其基本假设是人脸图像处于高维图像空间的低维子空间中.但是,由于光照变化、阴影、遮挡、局部镜面反射、图像噪声等因素的影响,使得子空间假设难以满足.为此,提出一种基于鲁棒主成分分析的人脸子空间... 子空间方法是人脸识别中的经典方法,其基本假设是人脸图像处于高维图像空间的低维子空间中.但是,由于光照变化、阴影、遮挡、局部镜面反射、图像噪声等因素的影响,使得子空间假设难以满足.为此,提出一种基于鲁棒主成分分析的人脸子空间重构方法.该方法将人脸图像数据矩阵表示为满足子空间假设的低秩矩阵和表征光照变化、阴影、遮挡、局部镜面反射、图像噪声等因素的误差矩阵之和,利用鲁棒主成分分析法求解低秩矩阵和误差矩阵.实验结果表明,文中方法能够有效地重构人脸图像的低维子空间. 展开更多
关键词 人脸识别 子空间重构 成分分析
下载PDF
基于分组鲁棒主成分分析的老电影修复 被引量:2
17
作者 于冰 丁友东 +1 位作者 董荪 黄曦 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期315-323,共9页
以老电影视频为研究对象,针对序列中存在的多种损伤类别,提出一种基于分组鲁棒主成分分析(robust principal component analysis,RPCA)的统一修复方法.采用镜头分割和去闪烁实现对视频序列的预处理.在多分辨率金字塔框架下,采用时空域... 以老电影视频为研究对象,针对序列中存在的多种损伤类别,提出一种基于分组鲁棒主成分分析(robust principal component analysis,RPCA)的统一修复方法.采用镜头分割和去闪烁实现对视频序列的预处理.在多分辨率金字塔框架下,采用时空域分组的方式在最粗糙层构造观测矩阵,依次执行基于交替线性法的RPCA变换后,根据帧间误差信息得到大面积破损位置;利用上采样方式构造初步修复结果序列、破损掩模序列以及最近邻偏移矩阵集合,继而对原始序列进行修改,重复时空域分组RPCA变换,实现对老电影视频序列的修复.实验结果证明,该方法能够同时修复画面中的不同损伤,并取得良好的效果. 展开更多
关键词 老电影 视频修复 成分分析
下载PDF
基于帧间相似性约束鲁棒主成分分析模型的运动目标检测 被引量:3
18
作者 杨国亮 鲁海荣 +1 位作者 丰义琴 黄经纬 《计算机应用与软件》 CSCD 2016年第1期142-146,共5页
针对鲁棒主成分分析模型RPCA(robust principle component analysis)未能有效地利用相邻两帧具有相似性这一特性,提出基于帧间相似性约束鲁棒主成分分析模型的运动目标检测算法。考虑到时间序列数据中相邻数据之间的相似性特性,在原始的... 针对鲁棒主成分分析模型RPCA(robust principle component analysis)未能有效地利用相邻两帧具有相似性这一特性,提出基于帧间相似性约束鲁棒主成分分析模型的运动目标检测算法。考虑到时间序列数据中相邻数据之间的相似性特性,在原始的RPCA模型基础上,引入帧间相似性约束条件,通过求解新的RPCA模型可以得到平滑的低秩数据矩阵和稀疏误差矩阵,有效保留了原有序列数据中的相似性结构。将该模型用于运动目标检测,观测图像序列分解成低秩背景矩阵和稀疏运动目标矩阵,对分解出的运动目标进行二值化,并对检测出的运动目标图像进行定性分析和采用Similarity与F-measure评判标准进行定量分析。通过实验结果分析,该算法能够有效地对运动目标进行检测,提高运动目标的检测率。 展开更多
关键词 成分分析 序列数据 帧间相似性约束 运动目标检测
下载PDF
不完全鲁棒主成分分析的正则化方法及其在背景建模中的应用 被引量:3
19
作者 史加荣 郑秀云 杨威 《计算机应用》 CSCD 北大核心 2015年第10期2824-2827,2832,共5页
针对现有的鲁棒主成分分析(RPCA)方法忽略序列数据的连续性及不完整性的情况,提出了一种低秩矩阵恢复模型——正则化不完全鲁棒主成分分析(RIRPCA)。首先基于序列数据连续性的度量函数建立了RIRPCA模型,即最小化矩阵核范数、L1范数和正... 针对现有的鲁棒主成分分析(RPCA)方法忽略序列数据的连续性及不完整性的情况,提出了一种低秩矩阵恢复模型——正则化不完全鲁棒主成分分析(RIRPCA)。首先基于序列数据连续性的度量函数建立了RIRPCA模型,即最小化矩阵核范数、L1范数和正则项的加权组合;然后使用增广拉格朗日乘子法来求解所提出的凸优化模型,此算法具有良好的可扩展性和较低的计算复杂度;最后,将RIRPCA应用到视频背景建模中。实验结果表明,RIRPCA比矩阵补全和不完全RPCA等方法在恢复丢失元素和分离前景上具有优越性。 展开更多
关键词 成分分析 低秩矩阵恢复 背景建模 核范数最小化 增广拉格朗日乘子法
下载PDF
基于混合截断范数的张量鲁棒主成分分析
20
作者 栾育洁 姜伟 《应用数学进展》 2022年第10期7373-7379,共7页
本文将截断核范数正则化的思想推广到张量鲁棒主成分分析。为提高模型的稳定性,新定义了张量截断Frobenius范数,并给出同时考虑张量截断核范数和截断Frobenius范数的混合截断模型。这种方法只会最小化min(m,n)-r个奇异值。此外,本文还... 本文将截断核范数正则化的思想推广到张量鲁棒主成分分析。为提高模型的稳定性,新定义了张量截断Frobenius范数,并给出同时考虑张量截断核范数和截断Frobenius范数的混合截断模型。这种方法只会最小化min(m,n)-r个奇异值。此外,本文还给出一种确定收缩算子的有效方法,并为此方法开发了一种基于交替方向的有效迭代算法来解决这个优化问题。实验结果表明,该方法可以有效并准确地实现图像去噪。 展开更多
关键词 张量成分分析 混合截断 交替方向乘子法
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部