Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of i...Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system.In this work,the effects of different operating conditions,such as impinging velocity and acid concentration,on segregation index were investigated.In addition,the effects of the inner nozzles diameter and the distance L between the jet axis and the top wall of the mixing chamber on the micromixing efficiency were also considered.It is concluded that the best range of L in this CIJR is 6.5–12.5 mm.Based on the incorporation model,the estimated minimum micromixing time tmof CIJR approximately equals to 2×10-4s.These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank(micromixing time of 2×10-3to 2×10-2s).Hence,it can be envisioned that CIJR has more promising applications in various industrial processes.展开更多
Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are ...Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.展开更多
Necessary and sufficient conditions for azeotropy in reactive mixtures are derived in terms of elemental composition, which shows that in the space of elemental compositions, they take the same functional form as the ...Necessary and sufficient conditions for azeotropy in reactive mixtures are derived in terms of elemental composition, which shows that in the space of elemental compositions, they take the same functional form as the conditions for azeotropy in non-reactive mixtures. The production of methyl tert-butyl ether (MTBE) is taken as an example. It is found that there are a 'pseudo' intermediate-boiling ternary reactive azeotrope at p = 101.325kPa and two 'real' ternary reactive azeotropes at p = 101.325 Pa. The introduced elemental compositions also reduce the dimensionality of the phase diagrams and provide a natural set of variables for visualization of phase behavior.展开更多
To control the multicomponent reactions in extrusion, reactive-mixing flow in a co-rotating twin screw extruder was numerically studied in the present paper. Effects of initial species distribution, rotating speed and...To control the multicomponent reactions in extrusion, reactive-mixing flow in a co-rotating twin screw extruder was numerically studied in the present paper. Effects of initial species distribution, rotating speed and flow rate on a competitive-parallel reaction were investigated and the relationship between mixing and reactions was discussed from the view of chemical reaction engineering. The simulation results show the studied operational parameters, which determine residence time distribution, earliness of mixing and segregation degree of reactive-mixing flows, affect the local species concentration and reaction time and hence have significant influences on the reaction extent. Orthogonal test was adopted to clarify the significance of operational parameters.The analysis shows that initial species distribution and flow rate are the most important factors in the control of reaction extent, and effect of rotating speed is conditional depending on the micro-mixing status of the fluid.展开更多
The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of ma...The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions.展开更多
AIM: To evaluate the efficacy and safety of a hybrid bioartificial liver (HBAL) system in the treatment of acute liver failure. METHODS: Canine models with acute liver failure were introduced with intravenous administ...AIM: To evaluate the efficacy and safety of a hybrid bioartificial liver (HBAL) system in the treatment of acute liver failure. METHODS: Canine models with acute liver failure were introduced with intravenous administration of D-galactosamine. The animals were divided into: the HBAL treatment group (n = 8), in which the canines received a 3-h treatment of HBAL; the bioartificial liver (BAL) treatment group (n = 8), in which the canines received a 3-h treatment of BAL; the non-bioartificial liver (NBAL) treatment group (n = 8), in which the canines received a 3-h treatment of NBAL; the control group (n = 8), in which the canines received no additional treatment. Biochemical parameters and survival time were determined. Levels of xenoantibodies, RNA of porcine endogenous retrovirus (PERV) and reverse transcriptase (RT) activity in the plasma were detected. RESULTS: Biochemical parameters were significantly decreased in all treatment groups. The TBIL level in the HBAL group was lower than that in other groups (2.19 ± 0.55 mmol/L vs 24.2 ± 6.45 mmol/L, 12.47 ± 3.62 mmol/L, 3.77 ± 1.83 mmol/L, P < 0.05). The prothrombin time (PT) in the BAL and HBAL groups was significantly shorter than the NBAL and control groups (18.47 ± 4.41 s, 15.5 ± 1.56 s vs 28.67 ± 5.71 s, 21.71 ± 3.4 s, P < 0.05), and the PT in the HBAL group was shortest of all the groups. The albumin in the BAL and HBAL groups significantly increased and a significantly higher level was observed in the HBAL group compared with the BAL group (27.7 ± 1.7 g/L vs 25.24 ± 1.93 g/L). In the HBAL group, the ammonia levels significantly decreased from 54.37 ± 6.86 to 37.75 ± 6.09 after treatment (P < 0.05); there were significant difference in ammonia levels between other the groups (P < 0.05). The levels of antibodies were similar before and after treatment. The PERV RNA and the RT activity in the canine plasma were all negative. CONCLUSION: The HBAL showed great efficiency and safety in the treatment of acute liver failure.展开更多
Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction...Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction mechanisms. Considering the high viscosity and low thermal conductivity of molten plastics, a falling film pyrolysis reactor was selected to explore the rapid co-pyrolysis process of typical plastic components(PP, PE and PS).The oil and gas yields and the compositions of pyrolysis products of the three components under different ratios at pyrolysis temperatures were analyzed to explore the co-pyrolysis characteristics of PP, PE, and PS. The study is of great significance to the recycling of waste plastics.展开更多
For the mixing-sensitive reactions, both chemical kinetics and mixing conditions of the reactants determine the distributions of products. The direct quadrature method of moments combining with the interaction by exch...For the mixing-sensitive reactions, both chemical kinetics and mixing conditions of the reactants determine the distributions of products. The direct quadrature method of moments combining with the interaction by exchange with the mean micro-mixing model(DQMOM-IEM) has been validated for the chemical reacting flows in microreactors. Quite encouraging simulation results offer great promise, but the applicability of this method is needed to be explored furthermore, such as in stirred reactors. In this work, the two-environment DQMOM-IEM model was created with C language and used to customize Fluent through the user-defined functions. The mixing effects on the course of parallel competing chemical reactions carried out in a semi-batch single-phase stirred reactor were predicted. The simulation results show that the rising feed velocity enlarges the volume of reaction zone and maximize the yield of the by-product, which also indicates that the feed stream is more difficultly dispersed into the main stream and the zone surrounding feedpipe exit with high turbulent kinetic dissipation rate cannot be efficiently used.展开更多
In this paper, the nitration characteristic of alcohols with mixed acid for the synthesis of energetic mate-rials in a stainless steel microreactor was investigated experimentally. The nitration of iso-octanol with HN...In this paper, the nitration characteristic of alcohols with mixed acid for the synthesis of energetic mate-rials in a stainless steel microreactor was investigated experimentally. The nitration of iso-octanol with HNO3-H2SO4 mixed acid was chosen as a typical model reaction which involved fast and strong exothermic liquid-liquid heterogeneous reaction process. The influences of mixed acid composition, flow rate, organic/aqueous flow ratio and reaction temperature have been investigated. The results indicated that the reaction could be con-ducted safely and stably in the microreactor at 25-40°C, which are enhanced compared to 15°C or below for safe operating conditions in the conventional reactors. Moreover, the 98.2% conversion of iso-octanol could be obtained and no by-products were detected in all cases.展开更多
Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different visco...Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different viscosities.The experimental results showed that segregation index of the micro-channel reactor increases with the decrease of volumetric flow rate and the increase of solution viscosity.Based on the incorporation model,the micromixing time tm of the micro-channel reactor was estimated in the range of 10-4-10-3s at different viscosities,which indicated that the micro-channel reactor possesses a much better micromixing performance compared to the stirred tank(tm=0.02-0.2s).展开更多
The parallel-competing iodide-iodate reaction scheme was used to study the micromixing performance in a multi-phase stirred tank of 0.3 m diameter.The impeller combination consisted of a half elliptical blade disk tur...The parallel-competing iodide-iodate reaction scheme was used to study the micromixing performance in a multi-phase stirred tank of 0.3 m diameter.The impeller combination consisted of a half elliptical blade disk turbine below two down-pimping wide-blade hydrofoils,identified as HEDT + 2WH_D.Nitrogen and glass beads of100 μm diameter and density 2500 kg-m^(-3) were used as the dispersed phases.The micromixing could be improved by sparging gas because of its additional potential energy.Also,micromixing could be improved by the solid particles with high kinetic energy near the impeller tip.In a gas-solid-liquid system,the gas-liquid film vibration with damping,due to the frequent collisions between the bubbles and particles,led to the decrease of the turbulence level in the liquid and caused eventually the deterioration of the micromixing.A Damping Film Dissipation model is formulated to shed light on the above micromixing performances.At last,the micromixing time t_m according to the incorporation model varied from 1.9 ms to 6.7 ms in our experiments.展开更多
Bubble column reactors are multiphase contacting devices used in a wide variety of industrial application. Inrtevep S. A. is working on developing technologies to convert heavy and extra-heavy crude oil using this typ...Bubble column reactors are multiphase contacting devices used in a wide variety of industrial application. Inrtevep S. A. is working on developing technologies to convert heavy and extra-heavy crude oil using this type of reactors. Volumetric gas hold up, flow pattern, average gas bubble size, average interfacial area, RTD (residence time distribution), dispersion coefficient, Peclet number are important design parameters for a proper scale up of them. Several cold model experiments have been proposed to determine the previously mentioned parameters at atmospheric conditions, using a plexiglas bubble column reactor at pilot plant scale unit (12 cm diameter). It was also evaluated our own design of internal trays (plates) in the reactor. Air-tap water and air-light oil systems have been used. A wide operating condition range was applied, superficial gas velocity between 0.5-10 cm/s, liquid flowrate between 15-65 I/h. Generally speaking, working without internal trays was found that gas hold up increase along the reactor and it was possible to identify heterogeneous bubble, transition and turbulent flow pattern areas for the air-light oil system. Average gas bubble size increase along the reactor at bubble regime from 2-5 mm but at turbulent regime, stay oscillating between 1-3 mm. Average interfacial area increases exponentially with superficial gas velocity at any reactor height, till 1,412 m2/m3 for the air-light oil system but, at bubble flow regime, the average interfacial area is lower than 100 m2/m3, which negatively impact the reactor performance. Internal trays in the reactor always increase gas hold up at any condition or system used. Residence time distributions curves, Peclet numbers and dispersion coefficients founded, show that this reactor with this kind of design internal trays still tends to be a complete mixing reactor under the operating conditions used.展开更多
This paper summarizes the selected results of an extensive investigation of application of two methods (hydrothermal and mechanochemical) assisted by calcination for synthesizing belite cement from reactive mixtures...This paper summarizes the selected results of an extensive investigation of application of two methods (hydrothermal and mechanochemical) assisted by calcination for synthesizing belite cement from reactive mixtures (CaO/SiO2 molar ratio of 2) consisting of various waste kinds from fluidized brown coal combustion in Slovakian power plant and CaO addition. Based on XRD diffraction patterns and infrared spectra ofpre-treatment products, the formation of the new profiles corresponding to CSH phases with low degree of ordering as belite precursors after hydrothermal treatment as well as metastables calcium silicates and aluminosilicates in mechanosynthesized products was confirmed. Calcination of hydrothermally treated products led to transformation of CSH phases to wollastonite (CS), belite and gehlenite phase, whereas creation oft^- and I^-C2S or wollastonite in milled reactive mixture took place. Differences in phase composition of products before and after calcination depend upon waste quality and precursor's synthesis conditions. Bottom ash isn't suitable as raw material for synthesizing belite phase because of high CaO content fixed in anhydrite form (44.1%). Coal fly ash with low CaO content in anhydrite form (4.2%) and its mechanochemical or hydrothermal treatment in combination with subsequent heating offer opportunities for the utilization of coal fly ash as raw material for belite production.展开更多
Based on a previous investigation,a simulation model was used for optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distillation.An experimental setup was established to verify the simulate...Based on a previous investigation,a simulation model was used for optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distillation.An experimental setup was established to verify the simulated results.The effects of various operating variables,such as ethanol feed location,acetic acid feed location,feed stage of reaction mixture of acetic acid and n-butanol,reflux ratio of ethyl acetate reactive distillation column,and distillate to feed ratio of n-butyl acetate column,on the ethanol/n-butanol conversions,ethyl acetate/n-butyl acetate purity,and energy consumption were investigated.The optimal results in the simulation study are as follows:ethanol feed location,15th stage;acetic acid feed location,eighth stage;feed location of reaction mixture of acetic acid and n-butanol,eighth stage;reflux ratio of ethyl acetate reactive distillation column,2.0;and distillate to feed ratio of n-butyl acetate,0.6.展开更多
The potential use ofcomposted wood fibre waste (WFW) for the cultivation of bacterial antagonists of Sclerotinia minor was examined with the result that a mix of millet seed (20% w/w) and WFW, suitably amended wit...The potential use ofcomposted wood fibre waste (WFW) for the cultivation of bacterial antagonists of Sclerotinia minor was examined with the result that a mix of millet seed (20% w/w) and WFW, suitably amended with nutrients, proved to be an ideal matrix for the growth of some of these bacteria. Densities in terms ofcfu's ranged from 8.5 IOgl0 cfu/g dw to 10.5 logl0 cfu/g dw ullder sterile conditions after 14 days incubation. Lower population densities of the antagonists were achieved under non-sterile conditions in the compost: millet mix of between 7.9-9.3 logm cfu/g dw at the same period. However, when applied in a pot (glasshouse) trial to protect against S. minor, the millet seed appeared to stimulate the growth of this pathogen resulting in a high incidence of attack of lettuce plants after 2-3 weeks. Although the percentage of healthy seedlings increased following application of compost mix grown antagonists (at a rate of 5% v/v) when compared to the control treatment, these values were not statistically significant (p〉0.05) in most cases. Therefore, the use of millet seeds cannot be recommended as a nutrient supplement for the bacterial antagonist cultivation, if to be subsequently used to control fungal pathogens in the field.展开更多
基金Supported by the National Natural Science Foundation of China(21206002,21121064,20990224)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13A03)
文摘Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system.In this work,the effects of different operating conditions,such as impinging velocity and acid concentration,on segregation index were investigated.In addition,the effects of the inner nozzles diameter and the distance L between the jet axis and the top wall of the mixing chamber on the micromixing efficiency were also considered.It is concluded that the best range of L in this CIJR is 6.5–12.5 mm.Based on the incorporation model,the estimated minimum micromixing time tmof CIJR approximately equals to 2×10-4s.These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank(micromixing time of 2×10-3to 2×10-2s).Hence,it can be envisioned that CIJR has more promising applications in various industrial processes.
文摘Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.
基金Supported by the National Natural Science Foundation of China (No.29976035) and Zhejiang and Fujian Provincial Natural Science Foundation of China.
文摘Necessary and sufficient conditions for azeotropy in reactive mixtures are derived in terms of elemental composition, which shows that in the space of elemental compositions, they take the same functional form as the conditions for azeotropy in non-reactive mixtures. The production of methyl tert-butyl ether (MTBE) is taken as an example. It is found that there are a 'pseudo' intermediate-boiling ternary reactive azeotrope at p = 101.325kPa and two 'real' ternary reactive azeotropes at p = 101.325 Pa. The introduced elemental compositions also reduce the dimensionality of the phase diagrams and provide a natural set of variables for visualization of phase behavior.
基金Supported by National Program on Key Basic Research Project(2011CB606100)the National Natural Science Foundation of China(21406059)
文摘To control the multicomponent reactions in extrusion, reactive-mixing flow in a co-rotating twin screw extruder was numerically studied in the present paper. Effects of initial species distribution, rotating speed and flow rate on a competitive-parallel reaction were investigated and the relationship between mixing and reactions was discussed from the view of chemical reaction engineering. The simulation results show the studied operational parameters, which determine residence time distribution, earliness of mixing and segregation degree of reactive-mixing flows, affect the local species concentration and reaction time and hence have significant influences on the reaction extent. Orthogonal test was adopted to clarify the significance of operational parameters.The analysis shows that initial species distribution and flow rate are the most important factors in the control of reaction extent, and effect of rotating speed is conditional depending on the micro-mixing status of the fluid.
基金Project(51276131)supported by the National Natural Science Foundation of ChinaProject(ZRZ0316)supported by the Natural Science Foundation of Hubei Province,ChinaProject(2013070104010025)supported by the Morning Glory Project of Wuhan Science and Technology Bureau,China
文摘The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions.
基金Supported by A grant from the National Natural Science Foundation of China, No. 30772129
文摘AIM: To evaluate the efficacy and safety of a hybrid bioartificial liver (HBAL) system in the treatment of acute liver failure. METHODS: Canine models with acute liver failure were introduced with intravenous administration of D-galactosamine. The animals were divided into: the HBAL treatment group (n = 8), in which the canines received a 3-h treatment of HBAL; the bioartificial liver (BAL) treatment group (n = 8), in which the canines received a 3-h treatment of BAL; the non-bioartificial liver (NBAL) treatment group (n = 8), in which the canines received a 3-h treatment of NBAL; the control group (n = 8), in which the canines received no additional treatment. Biochemical parameters and survival time were determined. Levels of xenoantibodies, RNA of porcine endogenous retrovirus (PERV) and reverse transcriptase (RT) activity in the plasma were detected. RESULTS: Biochemical parameters were significantly decreased in all treatment groups. The TBIL level in the HBAL group was lower than that in other groups (2.19 ± 0.55 mmol/L vs 24.2 ± 6.45 mmol/L, 12.47 ± 3.62 mmol/L, 3.77 ± 1.83 mmol/L, P < 0.05). The prothrombin time (PT) in the BAL and HBAL groups was significantly shorter than the NBAL and control groups (18.47 ± 4.41 s, 15.5 ± 1.56 s vs 28.67 ± 5.71 s, 21.71 ± 3.4 s, P < 0.05), and the PT in the HBAL group was shortest of all the groups. The albumin in the BAL and HBAL groups significantly increased and a significantly higher level was observed in the HBAL group compared with the BAL group (27.7 ± 1.7 g/L vs 25.24 ± 1.93 g/L). In the HBAL group, the ammonia levels significantly decreased from 54.37 ± 6.86 to 37.75 ± 6.09 after treatment (P < 0.05); there were significant difference in ammonia levels between other the groups (P < 0.05). The levels of antibodies were similar before and after treatment. The PERV RNA and the RT activity in the canine plasma were all negative. CONCLUSION: The HBAL showed great efficiency and safety in the treatment of acute liver failure.
基金Supported by the National Natural Science Foundation of China(51503154,51776141)Major Projects of China Water Pollution Control and Treatment Science and Technology(2017ZX07202005)
文摘Waste plastics mainly come from MSW and usually exist in the form of mixed plastics. During the co-pyrolysis process of mixed plastics, various plastic components have different physicochemical properties and reaction mechanisms. Considering the high viscosity and low thermal conductivity of molten plastics, a falling film pyrolysis reactor was selected to explore the rapid co-pyrolysis process of typical plastic components(PP, PE and PS).The oil and gas yields and the compositions of pyrolysis products of the three components under different ratios at pyrolysis temperatures were analyzed to explore the co-pyrolysis characteristics of PP, PE, and PS. The study is of great significance to the recycling of waste plastics.
基金Supported by the National Basic Research Program of China(2012CB224806)the National Natural Science Foundation of China(21306197,91434126)+1 种基金the Major National Scientific Instrument Development Project(21427814)Jiangsu National Synergetic Innovation Center for Advanced Materials
文摘For the mixing-sensitive reactions, both chemical kinetics and mixing conditions of the reactants determine the distributions of products. The direct quadrature method of moments combining with the interaction by exchange with the mean micro-mixing model(DQMOM-IEM) has been validated for the chemical reacting flows in microreactors. Quite encouraging simulation results offer great promise, but the applicability of this method is needed to be explored furthermore, such as in stirred reactors. In this work, the two-environment DQMOM-IEM model was created with C language and used to customize Fluent through the user-defined functions. The mixing effects on the course of parallel competing chemical reactions carried out in a semi-batch single-phase stirred reactor were predicted. The simulation results show that the rising feed velocity enlarges the volume of reaction zone and maximize the yield of the by-product, which also indicates that the feed stream is more difficultly dispersed into the main stream and the zone surrounding feedpipe exit with high turbulent kinetic dissipation rate cannot be efficiently used.
基金Supported by the National Natural Science Foundation of China (20490208)the National High Technology Research and Development Program of China (2007AA030206)the Open Fund of State Key Laboratory of Explosion Science and Technology,BIT (KFJJ06-1)
文摘In this paper, the nitration characteristic of alcohols with mixed acid for the synthesis of energetic mate-rials in a stainless steel microreactor was investigated experimentally. The nitration of iso-octanol with HNO3-H2SO4 mixed acid was chosen as a typical model reaction which involved fast and strong exothermic liquid-liquid heterogeneous reaction process. The influences of mixed acid composition, flow rate, organic/aqueous flow ratio and reaction temperature have been investigated. The results indicated that the reaction could be con-ducted safely and stably in the microreactor at 25-40°C, which are enhanced compared to 15°C or below for safe operating conditions in the conventional reactors. Moreover, the 98.2% conversion of iso-octanol could be obtained and no by-products were detected in all cases.
基金Supported by the National-Natural Science Foundation of China (20821004, 20806004) and the National High Technology Research and Development Program of China (2007AA030207, 2006AA030202, 2006AA030203).
文摘Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different viscosities.The experimental results showed that segregation index of the micro-channel reactor increases with the decrease of volumetric flow rate and the increase of solution viscosity.Based on the incorporation model,the micromixing time tm of the micro-channel reactor was estimated in the range of 10-4-10-3s at different viscosities,which indicated that the micro-channel reactor possesses a much better micromixing performance compared to the stirred tank(tm=0.02-0.2s).
基金Supported by the National Natural Science Foundation of China(20990224,21121064,21206002)
文摘The parallel-competing iodide-iodate reaction scheme was used to study the micromixing performance in a multi-phase stirred tank of 0.3 m diameter.The impeller combination consisted of a half elliptical blade disk turbine below two down-pimping wide-blade hydrofoils,identified as HEDT + 2WH_D.Nitrogen and glass beads of100 μm diameter and density 2500 kg-m^(-3) were used as the dispersed phases.The micromixing could be improved by sparging gas because of its additional potential energy.Also,micromixing could be improved by the solid particles with high kinetic energy near the impeller tip.In a gas-solid-liquid system,the gas-liquid film vibration with damping,due to the frequent collisions between the bubbles and particles,led to the decrease of the turbulence level in the liquid and caused eventually the deterioration of the micromixing.A Damping Film Dissipation model is formulated to shed light on the above micromixing performances.At last,the micromixing time t_m according to the incorporation model varied from 1.9 ms to 6.7 ms in our experiments.
文摘Bubble column reactors are multiphase contacting devices used in a wide variety of industrial application. Inrtevep S. A. is working on developing technologies to convert heavy and extra-heavy crude oil using this type of reactors. Volumetric gas hold up, flow pattern, average gas bubble size, average interfacial area, RTD (residence time distribution), dispersion coefficient, Peclet number are important design parameters for a proper scale up of them. Several cold model experiments have been proposed to determine the previously mentioned parameters at atmospheric conditions, using a plexiglas bubble column reactor at pilot plant scale unit (12 cm diameter). It was also evaluated our own design of internal trays (plates) in the reactor. Air-tap water and air-light oil systems have been used. A wide operating condition range was applied, superficial gas velocity between 0.5-10 cm/s, liquid flowrate between 15-65 I/h. Generally speaking, working without internal trays was found that gas hold up increase along the reactor and it was possible to identify heterogeneous bubble, transition and turbulent flow pattern areas for the air-light oil system. Average gas bubble size increase along the reactor at bubble regime from 2-5 mm but at turbulent regime, stay oscillating between 1-3 mm. Average interfacial area increases exponentially with superficial gas velocity at any reactor height, till 1,412 m2/m3 for the air-light oil system but, at bubble flow regime, the average interfacial area is lower than 100 m2/m3, which negatively impact the reactor performance. Internal trays in the reactor always increase gas hold up at any condition or system used. Residence time distributions curves, Peclet numbers and dispersion coefficients founded, show that this reactor with this kind of design internal trays still tends to be a complete mixing reactor under the operating conditions used.
文摘This paper summarizes the selected results of an extensive investigation of application of two methods (hydrothermal and mechanochemical) assisted by calcination for synthesizing belite cement from reactive mixtures (CaO/SiO2 molar ratio of 2) consisting of various waste kinds from fluidized brown coal combustion in Slovakian power plant and CaO addition. Based on XRD diffraction patterns and infrared spectra ofpre-treatment products, the formation of the new profiles corresponding to CSH phases with low degree of ordering as belite precursors after hydrothermal treatment as well as metastables calcium silicates and aluminosilicates in mechanosynthesized products was confirmed. Calcination of hydrothermally treated products led to transformation of CSH phases to wollastonite (CS), belite and gehlenite phase, whereas creation oft^- and I^-C2S or wollastonite in milled reactive mixture took place. Differences in phase composition of products before and after calcination depend upon waste quality and precursor's synthesis conditions. Bottom ash isn't suitable as raw material for synthesizing belite phase because of high CaO content fixed in anhydrite form (44.1%). Coal fly ash with low CaO content in anhydrite form (4.2%) and its mechanochemical or hydrothermal treatment in combination with subsequent heating offer opportunities for the utilization of coal fly ash as raw material for belite production.
基金Supported by the National Natural Science Foundation of China(21376053)
文摘Based on a previous investigation,a simulation model was used for optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distillation.An experimental setup was established to verify the simulated results.The effects of various operating variables,such as ethanol feed location,acetic acid feed location,feed stage of reaction mixture of acetic acid and n-butanol,reflux ratio of ethyl acetate reactive distillation column,and distillate to feed ratio of n-butyl acetate column,on the ethanol/n-butanol conversions,ethyl acetate/n-butyl acetate purity,and energy consumption were investigated.The optimal results in the simulation study are as follows:ethanol feed location,15th stage;acetic acid feed location,eighth stage;feed location of reaction mixture of acetic acid and n-butanol,eighth stage;reflux ratio of ethyl acetate reactive distillation column,2.0;and distillate to feed ratio of n-butyl acetate,0.6.
文摘The potential use ofcomposted wood fibre waste (WFW) for the cultivation of bacterial antagonists of Sclerotinia minor was examined with the result that a mix of millet seed (20% w/w) and WFW, suitably amended with nutrients, proved to be an ideal matrix for the growth of some of these bacteria. Densities in terms ofcfu's ranged from 8.5 IOgl0 cfu/g dw to 10.5 logl0 cfu/g dw ullder sterile conditions after 14 days incubation. Lower population densities of the antagonists were achieved under non-sterile conditions in the compost: millet mix of between 7.9-9.3 logm cfu/g dw at the same period. However, when applied in a pot (glasshouse) trial to protect against S. minor, the millet seed appeared to stimulate the growth of this pathogen resulting in a high incidence of attack of lettuce plants after 2-3 weeks. Although the percentage of healthy seedlings increased following application of compost mix grown antagonists (at a rate of 5% v/v) when compared to the control treatment, these values were not statistically significant (p〉0.05) in most cases. Therefore, the use of millet seeds cannot be recommended as a nutrient supplement for the bacterial antagonist cultivation, if to be subsequently used to control fungal pathogens in the field.