混合Logit模型具有较高的灵活性,其效用变量的系数可以服从正态分布、对数正态分布、SB分布等多种形式.本文以北京市居民出行调查数据为基础,建立交通方式选择的混合Logit模型,允许系数取不同分布类型的组合,采用极大模拟似然法完成参...混合Logit模型具有较高的灵活性,其效用变量的系数可以服从正态分布、对数正态分布、SB分布等多种形式.本文以北京市居民出行调查数据为基础,建立交通方式选择的混合Logit模型,允许系数取不同分布类型的组合,采用极大模拟似然法完成参数估计.在模拟中使用拟随机数序列计算模拟概率,首先使用变序Halton序列给出几种高精度的结果,进一步采用MLHS(Modified Latin Hypercube Sampling)方法对其中最好的假设模拟求解,为效用变量的系数确定了合适的随机分布函数.参数的估计值清晰地解释了影响人们出行的各种因素.展开更多
文摘混合Logit模型具有较高的灵活性,其效用变量的系数可以服从正态分布、对数正态分布、SB分布等多种形式.本文以北京市居民出行调查数据为基础,建立交通方式选择的混合Logit模型,允许系数取不同分布类型的组合,采用极大模拟似然法完成参数估计.在模拟中使用拟随机数序列计算模拟概率,首先使用变序Halton序列给出几种高精度的结果,进一步采用MLHS(Modified Latin Hypercube Sampling)方法对其中最好的假设模拟求解,为效用变量的系数确定了合适的随机分布函数.参数的估计值清晰地解释了影响人们出行的各种因素.