A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is di...A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior.展开更多
1920s and 1930s architecture has often been associated with the use of modern materials, such as reinforced concrete, glass and steel, mainly thanks to the role given them by the historiography of the modern, of prese...1920s and 1930s architecture has often been associated with the use of modern materials, such as reinforced concrete, glass and steel, mainly thanks to the role given them by the historiography of the modern, of presenting a break with former tradition and of spreading the need of architectural renewal. The study of architecture from the point of view of construction techniques evidences, instead, how architectural renewal started earlier, during the 19 century and involved the whole realm of building, even tradition-associated materials, such as wood and stone. Indeed, artificial stone (which appeared in early 19 century) represents--above all in France--a link between traditional construction in stone and the newborn reinforced-concrete technique, so as to underline the gradual shift from 19 century construction codes to the new industrial construction techniques, which in the 1920s and 1930s tend to overlap and blend, in this way determining a material continuity of modern and 19 century architecture.展开更多
According to the great demand for the" green" plastics processing technology of the low energy consumption, high efficiency and environmental protection in plastics industry, the plastics processing method and techn...According to the great demand for the" green" plastics processing technology of the low energy consumption, high efficiency and environmental protection in plastics industry, the plastics processing method and technology based on the elongation rheology, with continuing evolution and innovation of the plastics plasticating and conveying method, are presented and researched on the basis of the plastics dynamic processing method arid equipment, and the plastics plasticating and conveying process in the vane extrusion system, the technical characteristics and the applications of vane plasticating and conveying technology are discussed. The research results show that compared with the conventional processing equipment, this new technology and equipment shows many outstanding advantages, such as shortening the thermo-meehanical history of the plastics processing by more than 50 % , reducing the energy consumption by 30 % or so, improving the mixing and blending effects, improving the quality of the products and the adaptability to materials, etc. , and it is found that the new technology and equipment has special superiority in the fields of the processing for material systems, such as the multiphase and multicomponent composite materials, the shear heat sensitive macromolecular materials, etc.展开更多
This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) metho...This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.展开更多
A single specimen test using the three point single edge notched beam configuration at low temperatures for obtaining hot mix asphalt (HMA) resistance curves is developed.Resistance curves are obtained for mixtures ...A single specimen test using the three point single edge notched beam configuration at low temperatures for obtaining hot mix asphalt (HMA) resistance curves is developed.Resistance curves are obtained for mixtures at six temperature levels of+5,0,-5,-10,-15,and-20 ℃ and three binder contents of 4%,4.5%,and 5%.Crack extension increments during the test are measured by means of an image processing technique using Radon transform and feature extraction.All the specimens exhibit a rising R-curve,indicating ductility and toughening mechanisms in the ductile-quasi brittle fracture of the mixture.It is observed that the reduction of temperature results in a further tendency of the mixture for unstable crack growth and less subcritical crack length.It is also shown that using the binarization process,an automatic index can be developed that can represent the extent of brittleness and extent of the low temperature in which the cracking has occurred.展开更多
3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper,...3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.展开更多
Facing the innovation technology in building construction, the designer has the option in selecting the type of system construction and building materials. There is a big question for the designer and owner on how to ...Facing the innovation technology in building construction, the designer has the option in selecting the type of system construction and building materials. There is a big question for the designer and owner on how to evaluate the quality material to meet the technical requirements as building construction reliability. By demand to provide a low cost house, there is need for improving structure model and material construction for residents. When material cost takes 60%-70% of total construction cost, it is important to select the appropriate building material. Currently the innovation of material building for main frame and wall component has present for residential projects in Indonesia. Attempt to replace the traditional material such as brick or pozzolan lime concrete block is developed a new material include utilization of coal combustion waste for concrete block, lightweight concrete, or prefab panel wall. This paper presents the research result to develop a tool support for material and system construction selecting that facilitates the selection an optimal material for a simple house construction. A multi-criteria decision method is used based on performance criteria such as economy, reliability, comfort and eco-friend.展开更多
Peridynamics (PD), a recently developed theory of solid mechanics, which employs a non-local model of force interaction and makes use of integral formulation rather than the spatial partial differential equations used...Peridynamics (PD), a recently developed theory of solid mechanics, which employs a non-local model of force interaction and makes use of integral formulation rather than the spatial partial differential equations used in the classical continuum mechanics theory, has shown effectiveness and promise in solving discontinuous problems at both macro and micro scales. In this paper, the peridynamics theory is used to analyze damage and progressive failure of concrete structures. A non-local peridynamic model for a rectangular concrete plate is developed, and a central pairwise force function is introduced to describe the interior interactions between particles within some definite distance. Damage initiation, evolution and crack propagation in the concrete model subject to in-plane uni-axial tension, in-plane uni-axial compression and out-of-plane impact load are investigated respectively. The numerical results show that discontinuities appear and grow spontaneously as part of the solution to the peridynamic equations of motion, and no special failure criteria or re-meshing techniques are required, which proves the potential of peridynamic modeling as a promising technique for analyzing the progressive failure of concrete materials and structures.展开更多
基金Program for New Century Excellent Talents in University(No. NCET-08-0118)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090092110049)
文摘A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior.
文摘1920s and 1930s architecture has often been associated with the use of modern materials, such as reinforced concrete, glass and steel, mainly thanks to the role given them by the historiography of the modern, of presenting a break with former tradition and of spreading the need of architectural renewal. The study of architecture from the point of view of construction techniques evidences, instead, how architectural renewal started earlier, during the 19 century and involved the whole realm of building, even tradition-associated materials, such as wood and stone. Indeed, artificial stone (which appeared in early 19 century) represents--above all in France--a link between traditional construction in stone and the newborn reinforced-concrete technique, so as to underline the gradual shift from 19 century construction codes to the new industrial construction techniques, which in the 1920s and 1930s tend to overlap and blend, in this way determining a material continuity of modern and 19 century architecture.
基金The National Nature Science Foundation of China (No.10872071 No.50973035+1 种基金 No.50903033)The National Technology R&D Program of China(No.2009BA184B06)
文摘According to the great demand for the" green" plastics processing technology of the low energy consumption, high efficiency and environmental protection in plastics industry, the plastics processing method and technology based on the elongation rheology, with continuing evolution and innovation of the plastics plasticating and conveying method, are presented and researched on the basis of the plastics dynamic processing method arid equipment, and the plastics plasticating and conveying process in the vane extrusion system, the technical characteristics and the applications of vane plasticating and conveying technology are discussed. The research results show that compared with the conventional processing equipment, this new technology and equipment shows many outstanding advantages, such as shortening the thermo-meehanical history of the plastics processing by more than 50 % , reducing the energy consumption by 30 % or so, improving the mixing and blending effects, improving the quality of the products and the adaptability to materials, etc. , and it is found that the new technology and equipment has special superiority in the fields of the processing for material systems, such as the multiphase and multicomponent composite materials, the shear heat sensitive macromolecular materials, etc.
基金Supported by the National Natural Science Foundation of China (60801052)Aeronautical Science Foundation of China (2009ZC52036)
文摘This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.
文摘A single specimen test using the three point single edge notched beam configuration at low temperatures for obtaining hot mix asphalt (HMA) resistance curves is developed.Resistance curves are obtained for mixtures at six temperature levels of+5,0,-5,-10,-15,and-20 ℃ and three binder contents of 4%,4.5%,and 5%.Crack extension increments during the test are measured by means of an image processing technique using Radon transform and feature extraction.All the specimens exhibit a rising R-curve,indicating ductility and toughening mechanisms in the ductile-quasi brittle fracture of the mixture.It is observed that the reduction of temperature results in a further tendency of the mixture for unstable crack growth and less subcritical crack length.It is also shown that using the binarization process,an automatic index can be developed that can represent the extent of brittleness and extent of the low temperature in which the cracking has occurred.
文摘3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.
文摘Facing the innovation technology in building construction, the designer has the option in selecting the type of system construction and building materials. There is a big question for the designer and owner on how to evaluate the quality material to meet the technical requirements as building construction reliability. By demand to provide a low cost house, there is need for improving structure model and material construction for residents. When material cost takes 60%-70% of total construction cost, it is important to select the appropriate building material. Currently the innovation of material building for main frame and wall component has present for residential projects in Indonesia. Attempt to replace the traditional material such as brick or pozzolan lime concrete block is developed a new material include utilization of coal combustion waste for concrete block, lightweight concrete, or prefab panel wall. This paper presents the research result to develop a tool support for material and system construction selecting that facilitates the selection an optimal material for a simple house construction. A multi-criteria decision method is used based on performance criteria such as economy, reliability, comfort and eco-friend.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2007CB714104)the National Natural Science Foundation of China (Grant No. 10972072)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 2009B14914)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering at Hohai University (Grant Nos. 2009587012, 2009585912)
文摘Peridynamics (PD), a recently developed theory of solid mechanics, which employs a non-local model of force interaction and makes use of integral formulation rather than the spatial partial differential equations used in the classical continuum mechanics theory, has shown effectiveness and promise in solving discontinuous problems at both macro and micro scales. In this paper, the peridynamics theory is used to analyze damage and progressive failure of concrete structures. A non-local peridynamic model for a rectangular concrete plate is developed, and a central pairwise force function is introduced to describe the interior interactions between particles within some definite distance. Damage initiation, evolution and crack propagation in the concrete model subject to in-plane uni-axial tension, in-plane uni-axial compression and out-of-plane impact load are investigated respectively. The numerical results show that discontinuities appear and grow spontaneously as part of the solution to the peridynamic equations of motion, and no special failure criteria or re-meshing techniques are required, which proves the potential of peridynamic modeling as a promising technique for analyzing the progressive failure of concrete materials and structures.