To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and sol...To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and solid parts which consist of coarse aggregate particles and a cement mortar matrix. The cement mortar matrix is assumed to be elastic, homogeneous and isotropic. Based on the Moil-Tanaka concept of average stress and the Eshelby equivalent inclusion theory, a dynamic constitutive model is developed to simulate the impact responses of concrete. The impact compression experiments of concrete and cement mortar are also carried out. Experimental results show that concrete and cement mortar are rate-dependent. Under the same impact velocity, the load-carrying capacity of concrete is higher than that of cement mortar. Whereas, the maximum strain of concrete is lower than that of cement mortar. Regardless of whether it is concrete or cement mortar, with the increase in the impact velocity, the fragment size of specimens after experiment decreases.展开更多
The series-wound dashpot of the Burgers model is modified by introducing the strain hardening parameter, and the new model is considered as a combination of the modified dashpot and the Van Der Poel model. The cyclica...The series-wound dashpot of the Burgers model is modified by introducing the strain hardening parameter, and the new model is considered as a combination of the modified dashpot and the Van Der Poel model. The cyclical pulse load consisting of a haversine load time and a rest period is adopted to simulate the actual vehicle load, and the permanent strain model under the repeated load is derived from the rheological and viscoelastic theories. Subsequently, the model is validated by the results of uniaxial repeated load permanent deformation tests of three asphalt mixtures. It is indicated that the proportion of residual viscoelastic strain to permanent strain decreases gradually with the load cycles, and only accounts for 2% to 3% during most of the loading period. If the rest period is long, the residual viscoelastic strain is little. The rest period of the actual vehicle load may be long enough, so the residual viscoelasticity can be ignored and the simplified model can be obtained. The proposed model can well describe the permanent deformation of asphalt mixtures under repeated load.展开更多
In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a ...In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a large diameter split Hopkinson pressure bar, respectively. Based on statistical damage theory and Weibull distribution, combining the analysis of the change laws of stressstrain curves and viscosity coefficient of concrete with age, a damage constitutive model that can reflect the variation in dynamic mechanical properties with age was proposed. The stress-strain curves calculated from the proposed model are in good agreement with those from experimental data directly.展开更多
With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for dee...With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.展开更多
Combining fiber reinforced polymer(FRP)with seawater sea-sand concrete(SSC)can solve the shortage of river sand that will be used for marine engineering construction.The bond performance of BFRP bars and SSC specimens...Combining fiber reinforced polymer(FRP)with seawater sea-sand concrete(SSC)can solve the shortage of river sand that will be used for marine engineering construction.The bond performance of BFRP bars and SSC specimens is researched by pull-out test in this paper.The effects of the parameters,such as bar type,bar diameter,concrete type and stirrup restraint,are considered.It is beneficial to the bonding performance by the reduction of bar diameter.The utilization of seawater sea-sand has a low influence on the bond properties of concrete.The bond strength of BFRP is slightly lower than the steel rebar,but the difference is relatively small.The failure mode of the specimen can be changed and the interfacial bond stress can be improved by stirrups restraint.The bond-slip curves of BFRP ribbed rebar include micro slip stage,slip stage,descent stage and residual stage.The bond stress shows the cycle attenuation pattern of sine in the residual stage.In addition,the bond-slip model of BFRP and SSC is obtained according to the experimental results and related literature,while the predicted curve is also consistent well with the measured curve.展开更多
The risk during construction and in the operation of the underground gas storage (UGS) was analyzed. One of most important risk which should be prevented is large deformation or destruction of the steel lining. The ...The risk during construction and in the operation of the underground gas storage (UGS) was analyzed. One of most important risk which should be prevented is large deformation or destruction of the steel lining. The specific deformation of the steel lining needs to be inside the acceptable value. This paper presents lined rock cavern (LRC) concept and specific deformations, which can occur under operation of underground gas storage. Analysis is performed with different (3D model and axis symmetrical) FEM models and analytical model. We made a comparison between analytical calculation and FEM calculation. Concrete wall is mechanically not regarded as reinforced concrete structure which means that concrete will crack. Finally, we determined the minimum value of Young's modulus, which satisfies the condition of maximum deformation of steel lining.展开更多
In order to quantitatively evaluate the spurious dianeutral mixing in a global ocean model MPAS-Ocean (Model for Prediction Across Scales) using a spherical centroidal voronoi tessellations developed jointly by the ...In order to quantitatively evaluate the spurious dianeutral mixing in a global ocean model MPAS-Ocean (Model for Prediction Across Scales) using a spherical centroidal voronoi tessellations developed jointly by the National Center for Atmospheric Research and the Los Alamos National Laboratory in the United States, we choose z* vertical coordinate system in MPAS-Ocean, in which all physical mixing processes, such as convection adjustment and explicit diffusion parameter schemes, are omitted, using a linear equation of state. By calculating the Reference Potential Energy (RPE), front revolution position, time rate of RPE change, probability density function distribution and dimensionless parameter 2", from the perspectives of resolution, viscosity, Horizontal Grid Reynolds Number (HGRN), Rea, and momentum transmission scheme, using two ideal cases, overflow and baroclinic eddy channel, we qualitatively analyze the simulation results by comparison with the three non-isopycnal models in Ilicak et al. (2012), i.e., MITocM, MOM, and ROMS. The results show that the spurious dianeutral mixing in the MPAS-Ocean increases over time. The spurious dianeutral transport is proportional to the HGRN directly and is reduced by increasing the lateral viscosity or using a finer resolution to control HGRN. When the HGRN is less than 10, spurious transport is reduced significantly. When using the proper viscosity closure, MPAS-Ocean performs better than MIT6c and MOM, closely to ROMS, in the 2D case without rotation, and much better than the above-mentioned three ocean models under the condition of 3D space with rotation due to the cell area difference between the hexa- gon cell and the quadrilateral cell with the same resolution. Both the Zalesak (1979) flux corrected transport scheme and Leith closure in MPAS-Ocean play an excellent role in reducing spurious dianeutral mixing. The performance of Leith scheme is preferable to the condition of three-dimensional baroclinic eddy.展开更多
The molecular-based magnetic materials AFe11 Fe111(C2O4)3 have a honeycomb structure in which FeII (S = 2) and FeIH (S= 5/2) occupy sites alternately. They can be described as mixed spin-2 and spin-5/2 Ising mod...The molecular-based magnetic materials AFe11 Fe111(C2O4)3 have a honeycomb structure in which FeII (S = 2) and FeIH (S= 5/2) occupy sites alternately. They can be described as mixed spin-2 and spin-5/2 Ising model with ferrimagnetic interlayer coupling. The influences of the transverse field on the internal energy and the specific heat of the molecalar-based magnetic system have been studied numerically by using the effective-field theory with self-spin correlations and the differential operator technique.展开更多
The present study aims to better understand the relationship between energy intensity and its determinants including energy price, technological progress, economic structure, and energy mix using the autoregressive di...The present study aims to better understand the relationship between energy intensity and its determinants including energy price, technological progress, economic structure, and energy mix using the autoregressive distributed lag(ARDL) bounds approach and vector error correction model technique. Based on China's time series over 1985-2014, the ARDL bounds approach yields empirical evidence that confirms the existence of long run relationship between energy price, technological progress, economic structure, energy mix, and energy intensity. The results show that technological progress is an important driver for the declining energy intensity in short and long run. Energy price has not been demonstrated as an important role in decreasing energy intensity in the short run. The high share of coal use in total energy use may be responsible for China's high energy intensity.However, the relative change in economic sectors plays a minor role in energy intensity reduction during the past years. In the long run, technological progress, energy mix and energy prices Granger cause energy intensity, but not vice versa except for the energy mix.展开更多
The increasing stocks of public infrastructure and serious deterioration of infrastructure systems due to corrosion present great financial, safety, technical and operational challenges to government organizations in ...The increasing stocks of public infrastructure and serious deterioration of infrastructure systems due to corrosion present great financial, safety, technical and operational challenges to government organizations in charge of public infrastructure development and management. To meet those challenges, a performance-based life-cycle management model for reinforced concrete structures was proposed in this paper. This model predicts the life-cycle performance of infrastructure based on the corrosion-induced deterioration mechanism: condition index as well as performance limit states. A case study is provided to demonstrate the use of the proposed performance-based life-cycle cost management model.展开更多
In this paper,we propose a concurrent multi-scale finite element(FE) model coupling equations of the degree of freedoms of meso-scale model of ITZs and macroscopic model of bulk pastes.The multi-scale model is subsequ...In this paper,we propose a concurrent multi-scale finite element(FE) model coupling equations of the degree of freedoms of meso-scale model of ITZs and macroscopic model of bulk pastes.The multi-scale model is subsequently implemented and integrated into ABAQUS resulting in easy application to complex concrete structures.A few benchmark numerical examples are performed to test both the accuracy and efficiency of the developed model in analyzing chloride diffusion in concrete.These examples clearly demonstrate that high diffusivity of ITZs,primarily because of its porous microstructure,tends to accelerate chloride penetration along concentration gradient.The proposed model provides new guidelines for the durability analysis of concrete structures under adverse operating conditions.展开更多
Based on the concepts of continuum damage theory,a new plastic damage model for concrete crack failure is developed through studying the basic damage mechanics.Two damage variables,tensile damage variable for tensile ...Based on the concepts of continuum damage theory,a new plastic damage model for concrete crack failure is developed through studying the basic damage mechanics.Two damage variables,tensile damage variable for tensile damage and shear damage variable for compressive damage,are adopted to represent the influence of microscopic damage on material macromechanics properties under tensile and compressive loadings.The yield criteria and flow rule determining the plasticity of concrete are established in the effective stress space,which is convenient to decouple the damage process from the plastic process and calibrate material parameters with experimental results.Meanwhile,the plastic part of the proposed model can be implemented by back-Euler implicit algorithm,and the damage part is explicit.Consequently,there exist robust algorithms for integrating the constitutive relations using finite element method.Comparison with several experimental results shows that the model is capable of simulating the nonlinear performance of concrete under multiaxial stress state and can be applied to practical concrete structures.展开更多
The soil-rock mixture(SRM) is highly heterogeneous. Before carrying out numerical analysis,a structure model should be generated. A reliable way to obtain such structure is by generating random aggregate structure bas...The soil-rock mixture(SRM) is highly heterogeneous. Before carrying out numerical analysis,a structure model should be generated. A reliable way to obtain such structure is by generating random aggregate structure based on random sequential addition(RSA). The classical RSA is neither efficient nor robust since valid positions to place new inclusions are formulated by trial, which involves repetitive overlapping tests. In this paper, the algorithm of Entrance block between block A and B(EAB)is synergized with background mesh to redesign RSA so that permissible positions to place new inclusions can be predicted,resulting in dramatic improvement in efficiency and robustness.展开更多
A nonlinear multi-field coupled model for multi-constituent three-phase soils is derived by using the hybrid mixture theory. The balance equations with three levels (constituents, phases and the whole mixture soil) ar...A nonlinear multi-field coupled model for multi-constituent three-phase soils is derived by using the hybrid mixture theory. The balance equations with three levels (constituents, phases and the whole mixture soil) are set up under the assumption that soil is composed of multi-constituent elastic-plastic solid skeleton (which is different from the linearization method) and viscous liquid and ideal gas. With reasonable constitutive assumptions in such restrictive conditions as the principles of determinism, equipresence, material frame-indifference and the compatible principle in continuum mechanics, a theoretical framework of constitutive relations modeling three-phase soil in both non-equilibrium and equilibrium states is established, thus the closed field equations are formed. In the theoretical framework, the concept of effective generalized thermodynamic forces is introduced, and the nonlinear coupling constitutive relations between generalized dissipation forces and generalized flows within the system at nonequilibrium state are also presented. On such a basis, four special coupling relations, i.e., solid thermal elastic-plastic constitutive relation, liquid visco-elastic-plastic constitutive relation, the generalized Fourier’s law, and the generalized Darcy’s law are put forward. The generalized or nonlinear results mentioned above can degenerate into the linear coupling results given by Bennethum and Singh. Based on a specific dissipation function, the concrete form of generalized Darcy’s law is deduced, which may degenerate into the traditional form of Darcy’s law by neglecting the influence of skeleton deformation and temperature. Without considering temperature and other coupling effects, the nonlinear coupled model in this paper can degenerate into a soil elastic-plastic constitutive model.展开更多
Two experimental tests of three-storied reinforced concrete structural walls having large openings were performed.Based on an original macro model,a multiple modified macro-model was proposed to develop a simple metho...Two experimental tests of three-storied reinforced concrete structural walls having large openings were performed.Based on an original macro model,a multiple modified macro-model was proposed to develop a simple method to design a reinforced concrete structural wall with large openings and various opening locations.The interaction between reinforcement ties and concrete struts formed along the perimeter of openings was neglected in the original model.However,the strut-and-tie node was proposed to take account of such interaction in the proposed model.The predicted behavior of two specimens using such a proposed model was compared with the experimental results.It is shown that the behavior of structural walls with large openings could be modeled well using the proposed model.Moreover,the study indicates that the proposed model is applicable even in cases of multi-story structural walls having large openings and various opening locations.展开更多
In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete(RC)structures,a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber an...In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete(RC)structures,a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber.The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures.The stress-strain behavior of steel fiber is based on a model suggested by others.These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures.The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading.The damage evolution of a three-dimension frame subjected to impact loading is also investigated.展开更多
We investigate the stability of steady states of a size- and stage-structured population model, which is a hybrid system of ordinary and partial differential equations with global integral feedbacks. After the formula...We investigate the stability of steady states of a size- and stage-structured population model, which is a hybrid system of ordinary and partial differential equations with global integral feedbacks. After the formulation of a criterion by spectrum method, we derive conditions for global stability of the trivial state and local stability of the positive equilibrium via the basic reproduction rate. Furthermore, some examples and simulations ure .presented to illustrate the obtained results.展开更多
基金The National Natural Science Foundation of China(No. 11162015)the Natural Science Foundation of Ningxia Hui Autonomous Region (No. NZ1106)
文摘To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and solid parts which consist of coarse aggregate particles and a cement mortar matrix. The cement mortar matrix is assumed to be elastic, homogeneous and isotropic. Based on the Moil-Tanaka concept of average stress and the Eshelby equivalent inclusion theory, a dynamic constitutive model is developed to simulate the impact responses of concrete. The impact compression experiments of concrete and cement mortar are also carried out. Experimental results show that concrete and cement mortar are rate-dependent. Under the same impact velocity, the load-carrying capacity of concrete is higher than that of cement mortar. Whereas, the maximum strain of concrete is lower than that of cement mortar. Regardless of whether it is concrete or cement mortar, with the increase in the impact velocity, the fragment size of specimens after experiment decreases.
基金The National Natural Science Foundation of China(No50608006)Program for New Century Excellent Talents in University(NoNCET-07-0120)
文摘The series-wound dashpot of the Burgers model is modified by introducing the strain hardening parameter, and the new model is considered as a combination of the modified dashpot and the Van Der Poel model. The cyclical pulse load consisting of a haversine load time and a rest period is adopted to simulate the actual vehicle load, and the permanent strain model under the repeated load is derived from the rheological and viscoelastic theories. Subsequently, the model is validated by the results of uniaxial repeated load permanent deformation tests of three asphalt mixtures. It is indicated that the proportion of residual viscoelastic strain to permanent strain decreases gradually with the load cycles, and only accounts for 2% to 3% during most of the loading period. If the rest period is long, the residual viscoelastic strain is little. The rest period of the actual vehicle load may be long enough, so the residual viscoelasticity can be ignored and the simplified model can be obtained. The proposed model can well describe the permanent deformation of asphalt mixtures under repeated load.
基金Project(2010CB732004)supported by National Basic Research Program of ChinaProject(50934006)supported by the National Natural Science Foundation of China
文摘In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a large diameter split Hopkinson pressure bar, respectively. Based on statistical damage theory and Weibull distribution, combining the analysis of the change laws of stressstrain curves and viscosity coefficient of concrete with age, a damage constitutive model that can reflect the variation in dynamic mechanical properties with age was proposed. The stress-strain curves calculated from the proposed model are in good agreement with those from experimental data directly.
基金Project(50908082) supported by the National Natural Science Foundation of ChinaProject(2009ZK3111) supported by the Science and Technology Department of Hunan Province,China
文摘With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.
基金Project(BE2019642)supported by the Jiangsu Provincial Key Research and Development Program,China。
文摘Combining fiber reinforced polymer(FRP)with seawater sea-sand concrete(SSC)can solve the shortage of river sand that will be used for marine engineering construction.The bond performance of BFRP bars and SSC specimens is researched by pull-out test in this paper.The effects of the parameters,such as bar type,bar diameter,concrete type and stirrup restraint,are considered.It is beneficial to the bonding performance by the reduction of bar diameter.The utilization of seawater sea-sand has a low influence on the bond properties of concrete.The bond strength of BFRP is slightly lower than the steel rebar,but the difference is relatively small.The failure mode of the specimen can be changed and the interfacial bond stress can be improved by stirrups restraint.The bond-slip curves of BFRP ribbed rebar include micro slip stage,slip stage,descent stage and residual stage.The bond stress shows the cycle attenuation pattern of sine in the residual stage.In addition,the bond-slip model of BFRP and SSC is obtained according to the experimental results and related literature,while the predicted curve is also consistent well with the measured curve.
文摘The risk during construction and in the operation of the underground gas storage (UGS) was analyzed. One of most important risk which should be prevented is large deformation or destruction of the steel lining. The specific deformation of the steel lining needs to be inside the acceptable value. This paper presents lined rock cavern (LRC) concept and specific deformations, which can occur under operation of underground gas storage. Analysis is performed with different (3D model and axis symmetrical) FEM models and analytical model. We made a comparison between analytical calculation and FEM calculation. Concrete wall is mechanically not regarded as reinforced concrete structure which means that concrete will crack. Finally, we determined the minimum value of Young's modulus, which satisfies the condition of maximum deformation of steel lining.
基金supported by the National Natural Science Foundation of China (Grant No.41175089)
文摘In order to quantitatively evaluate the spurious dianeutral mixing in a global ocean model MPAS-Ocean (Model for Prediction Across Scales) using a spherical centroidal voronoi tessellations developed jointly by the National Center for Atmospheric Research and the Los Alamos National Laboratory in the United States, we choose z* vertical coordinate system in MPAS-Ocean, in which all physical mixing processes, such as convection adjustment and explicit diffusion parameter schemes, are omitted, using a linear equation of state. By calculating the Reference Potential Energy (RPE), front revolution position, time rate of RPE change, probability density function distribution and dimensionless parameter 2", from the perspectives of resolution, viscosity, Horizontal Grid Reynolds Number (HGRN), Rea, and momentum transmission scheme, using two ideal cases, overflow and baroclinic eddy channel, we qualitatively analyze the simulation results by comparison with the three non-isopycnal models in Ilicak et al. (2012), i.e., MITocM, MOM, and ROMS. The results show that the spurious dianeutral mixing in the MPAS-Ocean increases over time. The spurious dianeutral transport is proportional to the HGRN directly and is reduced by increasing the lateral viscosity or using a finer resolution to control HGRN. When the HGRN is less than 10, spurious transport is reduced significantly. When using the proper viscosity closure, MPAS-Ocean performs better than MIT6c and MOM, closely to ROMS, in the 2D case without rotation, and much better than the above-mentioned three ocean models under the condition of 3D space with rotation due to the cell area difference between the hexa- gon cell and the quadrilateral cell with the same resolution. Both the Zalesak (1979) flux corrected transport scheme and Leith closure in MPAS-Ocean play an excellent role in reducing spurious dianeutral mixing. The performance of Leith scheme is preferable to the condition of three-dimensional baroclinic eddy.
基金Supported by the Natural Science Foundation of Liaoning Province under Grant No.20041021the Scientific Foundation of the Educational Department of Liaoning Province under Grant Nos.20060638 and 2008533
文摘The molecular-based magnetic materials AFe11 Fe111(C2O4)3 have a honeycomb structure in which FeII (S = 2) and FeIH (S= 5/2) occupy sites alternately. They can be described as mixed spin-2 and spin-5/2 Ising model with ferrimagnetic interlayer coupling. The influences of the transverse field on the internal energy and the specific heat of the molecalar-based magnetic system have been studied numerically by using the effective-field theory with self-spin correlations and the differential operator technique.
文摘The present study aims to better understand the relationship between energy intensity and its determinants including energy price, technological progress, economic structure, and energy mix using the autoregressive distributed lag(ARDL) bounds approach and vector error correction model technique. Based on China's time series over 1985-2014, the ARDL bounds approach yields empirical evidence that confirms the existence of long run relationship between energy price, technological progress, economic structure, energy mix, and energy intensity. The results show that technological progress is an important driver for the declining energy intensity in short and long run. Energy price has not been demonstrated as an important role in decreasing energy intensity in the short run. The high share of coal use in total energy use may be responsible for China's high energy intensity.However, the relative change in economic sectors plays a minor role in energy intensity reduction during the past years. In the long run, technological progress, energy mix and energy prices Granger cause energy intensity, but not vice versa except for the energy mix.
文摘The increasing stocks of public infrastructure and serious deterioration of infrastructure systems due to corrosion present great financial, safety, technical and operational challenges to government organizations in charge of public infrastructure development and management. To meet those challenges, a performance-based life-cycle management model for reinforced concrete structures was proposed in this paper. This model predicts the life-cycle performance of infrastructure based on the corrosion-induced deterioration mechanism: condition index as well as performance limit states. A case study is provided to demonstrate the use of the proposed performance-based life-cycle cost management model.
基金supported by the National Basic Research Program of China (Grant No. 2009CB623202)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No.20100092110049)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In this paper,we propose a concurrent multi-scale finite element(FE) model coupling equations of the degree of freedoms of meso-scale model of ITZs and macroscopic model of bulk pastes.The multi-scale model is subsequently implemented and integrated into ABAQUS resulting in easy application to complex concrete structures.A few benchmark numerical examples are performed to test both the accuracy and efficiency of the developed model in analyzing chloride diffusion in concrete.These examples clearly demonstrate that high diffusivity of ITZs,primarily because of its porous microstructure,tends to accelerate chloride penetration along concentration gradient.The proposed model provides new guidelines for the durability analysis of concrete structures under adverse operating conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51139001,51179066,51079046)the Program for New Century Excellent Talents in University (Grant Nos. NCET-11-0628,NCET-10-0359)+1 种基金the Special Fund of State Key Laboratory of China(Grant Nos. 2009586012,2009586912,2010585212)the Fundamental Research Funds for the Central Universities (Grant Nos. 2010B20414,2010B01414,2010B14114)
文摘Based on the concepts of continuum damage theory,a new plastic damage model for concrete crack failure is developed through studying the basic damage mechanics.Two damage variables,tensile damage variable for tensile damage and shear damage variable for compressive damage,are adopted to represent the influence of microscopic damage on material macromechanics properties under tensile and compressive loadings.The yield criteria and flow rule determining the plasticity of concrete are established in the effective stress space,which is convenient to decouple the damage process from the plastic process and calibrate material parameters with experimental results.Meanwhile,the plastic part of the proposed model can be implemented by back-Euler implicit algorithm,and the damage part is explicit.Consequently,there exist robust algorithms for integrating the constitutive relations using finite element method.Comparison with several experimental results shows that the model is capable of simulating the nonlinear performance of concrete under multiaxial stress state and can be applied to practical concrete structures.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2014CB047100)the National Natural Science Foundation of China(Grant Nos.11572009,51538001 and 51609240)
文摘The soil-rock mixture(SRM) is highly heterogeneous. Before carrying out numerical analysis,a structure model should be generated. A reliable way to obtain such structure is by generating random aggregate structure based on random sequential addition(RSA). The classical RSA is neither efficient nor robust since valid positions to place new inclusions are formulated by trial, which involves repetitive overlapping tests. In this paper, the algorithm of Entrance block between block A and B(EAB)is synergized with background mesh to redesign RSA so that permissible positions to place new inclusions can be predicted,resulting in dramatic improvement in efficiency and robustness.
基金supported by the National Natural Science Foundation of China (Grant No. 51078019)the National Basic Research Program of China ("973" Program) (Grant No. 2010CB732100)Beijing Munici-pal Natural Science Foundation (Grant No. 8112024)
文摘A nonlinear multi-field coupled model for multi-constituent three-phase soils is derived by using the hybrid mixture theory. The balance equations with three levels (constituents, phases and the whole mixture soil) are set up under the assumption that soil is composed of multi-constituent elastic-plastic solid skeleton (which is different from the linearization method) and viscous liquid and ideal gas. With reasonable constitutive assumptions in such restrictive conditions as the principles of determinism, equipresence, material frame-indifference and the compatible principle in continuum mechanics, a theoretical framework of constitutive relations modeling three-phase soil in both non-equilibrium and equilibrium states is established, thus the closed field equations are formed. In the theoretical framework, the concept of effective generalized thermodynamic forces is introduced, and the nonlinear coupling constitutive relations between generalized dissipation forces and generalized flows within the system at nonequilibrium state are also presented. On such a basis, four special coupling relations, i.e., solid thermal elastic-plastic constitutive relation, liquid visco-elastic-plastic constitutive relation, the generalized Fourier’s law, and the generalized Darcy’s law are put forward. The generalized or nonlinear results mentioned above can degenerate into the linear coupling results given by Bennethum and Singh. Based on a specific dissipation function, the concrete form of generalized Darcy’s law is deduced, which may degenerate into the traditional form of Darcy’s law by neglecting the influence of skeleton deformation and temperature. Without considering temperature and other coupling effects, the nonlinear coupled model in this paper can degenerate into a soil elastic-plastic constitutive model.
基金Project supported by the Grants-in-Aid for Scientific Research of Japan (No. 16206056)the Scientific Research Foundation for Talent Introduction (No. 113201-811132)
文摘Two experimental tests of three-storied reinforced concrete structural walls having large openings were performed.Based on an original macro model,a multiple modified macro-model was proposed to develop a simple method to design a reinforced concrete structural wall with large openings and various opening locations.The interaction between reinforcement ties and concrete struts formed along the perimeter of openings was neglected in the original model.However,the strut-and-tie node was proposed to take account of such interaction in the proposed model.The predicted behavior of two specimens using such a proposed model was compared with the experimental results.It is shown that the behavior of structural walls with large openings could be modeled well using the proposed model.Moreover,the study indicates that the proposed model is applicable even in cases of multi-story structural walls having large openings and various opening locations.
基金supported by the National Natural Science Foundation of China(Grant No.90815026)
文摘In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete(RC)structures,a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber.The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures.The stress-strain behavior of steel fiber is based on a model suggested by others.These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures.The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading.The damage evolution of a three-dimension frame subjected to impact loading is also investigated.
文摘We investigate the stability of steady states of a size- and stage-structured population model, which is a hybrid system of ordinary and partial differential equations with global integral feedbacks. After the formulation of a criterion by spectrum method, we derive conditions for global stability of the trivial state and local stability of the positive equilibrium via the basic reproduction rate. Furthermore, some examples and simulations ure .presented to illustrate the obtained results.