A new type of rigid connection of steel girder and reinforced concrete pier of a bridge is proposed. The components in rigid connection are installed by high strength bolts on the spot, which are very convenient in ...A new type of rigid connection of steel girder and reinforced concrete pier of a bridge is proposed. The components in rigid connection are installed by high strength bolts on the spot, which are very convenient in construction. The moment from superstructure can be effectively transferred to substructure, and the plates provided for shear transferring can withstand the majority of total horizontal force. With static cyclic loading test, useful experimental data is obtained on the new type of connection of steel superstructure and concrete substructure. As a result, the stress transfer mechanism of the rigid connection can be made clearly and the seismic performance of this structure can also be clarified. Compared computed strength and ductility with actual results, it can be found that this type of connection has good energy absorption capacity in spite of large displacement and no local buckling arises at the locations where stress concentration occurs. Because of doing away with the expensive bearing, this new type of composite structure can be expected to construct a bridge with high seismic resistant capacity thus saving in total construction cost.展开更多
An index system of steel deck pavement design is proposed according to the study and classification of failure types. Furthermore the axle-equivalent equation is presented according to the fatigue principle of pavemen...An index system of steel deck pavement design is proposed according to the study and classification of failure types. Furthermore the axle-equivalent equation is presented according to the fatigue principle of pavement structures. Based on indoor experiments and theoretical analysis, this paper studies the stress characteristics of three different axle types which are corresponding with the other three typical pavement structures, and also presents the parameters of each axle's equivalent formula. The three axle types include single-axle single-wheel, single-axle double-wheel and double-axle double-wheel. According to analyses of influential factors such as climate, environment, traffic and stress condition, the developed axle equivalent formula and the parameters modified by the field test data can be applied in the design of a new bridge deck pavement and the assessment of an existing bridge deck pavement.展开更多
A model for predicting the interface behavior of epoxy asphalt and steel composite beam under negative bending is developed incorporating partial interaction theory. Interfacial slips between the steel deck and the ep...A model for predicting the interface behavior of epoxy asphalt and steel composite beam under negative bending is developed incorporating partial interaction theory. Interfacial slips between the steel deck and the epoxy asphalt surfacing are included in the model with a new parameter of membrane stiffness. A series of analytical equations based on this model are derived to calculate slip and strain at the interface. Also, a numerical procedure for calculating the load responses of simply supported composite beams with concentrated force at the mid-span is established and verified with two samples. Characters of slip and strain at the interface, sensitivities of tensile stress and interface shear stress with material parameters are studied. It can be concluded that interfacial effects decrease the bending stiffness of the composite; hard and stiff bonding material is better for asphalt surfacing layer working at normal to low temperatures, and the damage of the asphalt surfacing layer will be accelerated with the damage accumulation of the bonding coat.展开更多
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit...A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.展开更多
In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a...In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.展开更多
A review of the current status and progress of steel arch bridges in China is presented in this paper. The existing steel arch bridges in China were analyzed in terms of steel material, span, structure type, main arch...A review of the current status and progress of steel arch bridges in China is presented in this paper. The existing steel arch bridges in China were analyzed in terms of steel material, span, structure type, main arch rib form and construction method. The comparison with CFST arch bridges and RC arch bridges is also conducted. It is shown that steel arch bridge has gain rapid development in China since 2000, characterized by long main spans. As for the span, most of the steel arch bridges have a span less than 250 m, while when the span exceeds 350 m, steel arch bridges are strongly competitive against CFST or RC arch bridges. Over 80% of the bridges are through and half-through bridge types, and the arch ribs are hingeless structures. The rise-to-span ratios of the arches are mainly between 1:4 and 1: 5. Most of the arches use solid box ribs, and a small portion of arches use truss ribs in which box sections are mostly adopted for the truss members. The cantilever method and scaffolding method are the two main construction methods used, but some other construction methods have also been developed.展开更多
Bridge piers are impacted by autos sometimes. The pier usually has not been destroyed after once impact by auto. But there are few research on damage which will affect pier's capability, and most relative studies ...Bridge piers are impacted by autos sometimes. The pier usually has not been destroyed after once impact by auto. But there are few research on damage which will affect pier's capability, and most relative studies have focused the problems on piers impacted by vessels. The methods involve mainly sutra experience theory, numerical analysis, and experimental method. Owing to the complicacy of the bridge pier impacted by a vessel, there are few research derived with the sutra mechanics model and the piers impacted by autos. The dynamic response is studied here under the assumption of the rigid-plastic small-deformation for the pier impacted by auto. According to the Parkes beam model, the rigid-plastic theoretical solution is deduced. The final deformation is calculated by a practical example for the pier impacted by auto.展开更多
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate...A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.展开更多
The calculation of ultimate bearing capacity is a significant issue in the design of Concrete Filled Steel Tubular (CFST) arch bridges. Based on the space beam theory, this paper provides a calculation method for dete...The calculation of ultimate bearing capacity is a significant issue in the design of Concrete Filled Steel Tubular (CFST) arch bridges. Based on the space beam theory, this paper provides a calculation method for determining the ultimate strength of CFST structures. The accuracy of this method and the applicability of the stress-strain relationships were validated by comparing different existing confined concrete uniaxial constitutive relationships and experimental results. Comparison of these results indicated that this method using the confined concrete uniaxial stress-strain relationships can be used to calculate the ultimate strength and CFST behavior with satisfactory accuracy. The calculation results are stable and seldom affected by concrete con-stitutive relationships. The method is therefore valuable in the practice of engineering design. Finally, the ultimate strength of an arch bridge with span of 330 m was investigated by the proposed method and the nonlinear behavior was discussed.展开更多
Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf...Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.展开更多
To investigate the fatigue damage of epoxy asphalt pavement(EAP)under a heavy load and a d temperature load,the load-figure of the heavy load on the steel bridge deck pavement(SBDP)was simulated first,and the temperat...To investigate the fatigue damage of epoxy asphalt pavement(EAP)under a heavy load and a d temperature load,the load-figure of the heavy load on the steel bridge deck pavement(SBDP)was simulated first,and the temperature distribution of SBDP during the temperature-fall period in winter was also calculated.Secondly,t e moving heavy load coupled W t the most unfavorable temperatre load was applied to the SBDP,and the tensile stress on the top of SBDP was calculated.Finally,the fatigue damage of EAP was evaluated considering the extreme situation of heavily overloaded and severe environments.The results show that botte heavy load and the temperature load during t e temperature-fall period c n increase the tensile stress on the top of SBDP significantly.In the exteme situation of heavily overloaded and severe environments,a fatigue crack is easily generated,and thus the SBDP should avoid t e coupling effects of the heavy loadand the temperature load in winter.展开更多
With the digital image technology,a crack detection method of reinforced concrete bridge was studied for the performance assessment.The effects including the image gray level,pixel rate,noise filter,and edge detection...With the digital image technology,a crack detection method of reinforced concrete bridge was studied for the performance assessment.The effects including the image gray level,pixel rate,noise filter,and edge detection were analyzed considering cracks qualities.A computer program was developed by visual C++6.0 programming language to detect the cracks,which was tested by 15cases of bridge video images.The results indicate that the relative error is within 6%for cracks larger than 0.3 mm cracks and it is less than 10%for crack width between 0.2 mm and 0.3 mm.In addition,for the crack below 0.1 mm,the relative error is more than30%because the bridge is in safe stage and it is very difficult to detect the actual width of crack.展开更多
Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction seque...Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature.展开更多
Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on compariso...Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on comparisons of different deck schemes, construction sequences and measures, and ratios of reinforcement. The results show that the mechanical behavior of concrete slab gets worse with the increase of composite regions between steel beams and concrete slab. The deck scheme with the minimum composite region is recommended on condition that both strength and stiffness of the bridge meet design demands under service loads. Adopting in-situ-place construction method, concrete is suggested to be cast after removing the full-supported frameworks under the bridge. Thus, the axial tensile force of concrete slab caused by the first stage dead load is eliminated. Preloading the bridge before concrete casting and removing the load after the concrete reaching its design strength, the stresses of concrete slab caused by the second stage dead load and live load are further reduced or even eliminated. At last, with a high ratio of reinforcement more than 3%, the concrete stresses decrease obviously.展开更多
Since 1990s, the use of deicing salts (i.e., chlorides) has dramatically increased in areas with heavy snowfall in Japan. As a result, the water mixed with salts has accelerated the damage of the reinforced concrete...Since 1990s, the use of deicing salts (i.e., chlorides) has dramatically increased in areas with heavy snowfall in Japan. As a result, the water mixed with salts has accelerated the damage of the reinforced concrete (hereafter, RC) structures. Recently conducted inspection results of RC bridges have reported that many of the damages or deteriorations are observed at the girder ends and abutments This is caused from the water leakage due to the aged expansion joints. In general, the cost for repairing the damaged RC structures is much higher than that for renewing the expansion joints. Therefore, to prevent these damages, we developed a new highly durable jointless system, named RC plug joint, for existing RC bridges with a bridge length less than 40 meters. The RC plug joint connects the abutment's backwall to the superstructure's deck using reinforcing steel bars and fiber reinforced concrete. The newly developed RC plug joint system can prevent water leakage and allow for a smooth ride of vehicles at the joint. This paper will explore and discuss the development of the RC plug joint, analysis of conducted investigations, and future installation methods.展开更多
The response of a bridge superstructure under blast loading might depend largely on the extent of the local damage experienced due to close-in explosion threats. This paper investigates the local and structural respon...The response of a bridge superstructure under blast loading might depend largely on the extent of the local damage experienced due to close-in explosion threats. This paper investigates the local and structural response of box girder bridge decks strengthened using CFRP (carbon fiber reinforced polymers) under close-in detonations. Due to the lack of experimental research on this topic, the study is conducted using the explicit finite element computer program LS-DY-NA. The numerical study will be verified using the results of strengthened reinforced concrete slabs under field detonations. The blast load was assumed to be detonated above the bridge deck. The key parameters investigated are the charge size, and the strengthening location on the deck. This paper will present the results of this investigation and provides recommendations for predicting the local damage level based on the CFRP strengthening design under blast threat.展开更多
Considering the construction features of prestressed concrete bridge, the comprehensive evaluation method about the bridge damage conditions are studied. Particular attentions are paid on establishing a muhilevel eval...Considering the construction features of prestressed concrete bridge, the comprehensive evaluation method about the bridge damage conditions are studied. Particular attentions are paid on establishing a muhilevel evaluation model for damaged prestressed concrete bridge, and the evaluation indices of the model as well as the rating standards are defined in the model. A normal relative function about the evaluation indices of each element is developed to calculate the relative degree, and for each element which is no sub-level elements. When evaluating the elements in sub-item level or index level of the model, the weights of elements that are pertained to one element are adopted, taking account of their deterioration degree. At the same time, the dam- age conditions of bridge are characterized by relative degree, element evaluation scale and structural technology mark of bridge, so it agrees with Code for Maintenance of Highway Bridges and Culvers.展开更多
Estimation of creep and shrinkage in concrete bridges is still approximate and uncertain. Over the years, Polish Codes for Concrete Structures partially adapted the CEB (Euro-International Concrete Committee)-FIP (...Estimation of creep and shrinkage in concrete bridges is still approximate and uncertain. Over the years, Polish Codes for Concrete Structures partially adapted the CEB (Euro-International Concrete Committee)-FIP (International Federation for Prestressing) models used to predict creep and shrinkage of concrete. In the currently used Polish concrete bridge code, modified CEB-FIP 1970 recommendations are used. At the time the standard was implemented, it introduced simple methods for the evaluation of final creep coefficients and shrinkage strains. It was sufficient for simple bridge structures and concrete technology used at that times. As modern bridge structures have become increasingly complex with variable construction techniques and developing concrete technology, the implementation of Eurocode 2 is necessary as it gives more practical and accurate methods for the prediction of creep and shrinkage effects. A comparative analysis of the time-dependent deformation of concrete included in Eurocode 2 and in Polish Bridge Codes is pointing out that there is a necessity for more adequate criteria for the rapidly growing concrete bridge stock in Poland.展开更多
文摘A new type of rigid connection of steel girder and reinforced concrete pier of a bridge is proposed. The components in rigid connection are installed by high strength bolts on the spot, which are very convenient in construction. The moment from superstructure can be effectively transferred to substructure, and the plates provided for shear transferring can withstand the majority of total horizontal force. With static cyclic loading test, useful experimental data is obtained on the new type of connection of steel superstructure and concrete substructure. As a result, the stress transfer mechanism of the rigid connection can be made clearly and the seismic performance of this structure can also be clarified. Compared computed strength and ductility with actual results, it can be found that this type of connection has good energy absorption capacity in spite of large displacement and no local buckling arises at the locations where stress concentration occurs. Because of doing away with the expensive bearing, this new type of composite structure can be expected to construct a bridge with high seismic resistant capacity thus saving in total construction cost.
基金The National Natural Science Foundation of China(No.50578038)the Ph.D. Programs Foundation of Ministry of Ed-ucation of China (No.20050286008)Runyang Yangtze River High-way Bridge Technology Study for Steel-Deck Pavement.
文摘An index system of steel deck pavement design is proposed according to the study and classification of failure types. Furthermore the axle-equivalent equation is presented according to the fatigue principle of pavement structures. Based on indoor experiments and theoretical analysis, this paper studies the stress characteristics of three different axle types which are corresponding with the other three typical pavement structures, and also presents the parameters of each axle's equivalent formula. The three axle types include single-axle single-wheel, single-axle double-wheel and double-axle double-wheel. According to analyses of influential factors such as climate, environment, traffic and stress condition, the developed axle equivalent formula and the parameters modified by the field test data can be applied in the design of a new bridge deck pavement and the assessment of an existing bridge deck pavement.
基金The National Natural Science Foundation of China(No50578038)
文摘A model for predicting the interface behavior of epoxy asphalt and steel composite beam under negative bending is developed incorporating partial interaction theory. Interfacial slips between the steel deck and the epoxy asphalt surfacing are included in the model with a new parameter of membrane stiffness. A series of analytical equations based on this model are derived to calculate slip and strain at the interface. Also, a numerical procedure for calculating the load responses of simply supported composite beams with concentrated force at the mid-span is established and verified with two samples. Characters of slip and strain at the interface, sensitivities of tensile stress and interface shear stress with material parameters are studied. It can be concluded that interfacial effects decrease the bending stiffness of the composite; hard and stiff bonding material is better for asphalt surfacing layer working at normal to low temperatures, and the damage of the asphalt surfacing layer will be accelerated with the damage accumulation of the bonding coat.
基金Project(2015CB057701)supported by the National Basic Research Program of ChinaProject(51308071)supported by the National Natural Science Foundation of China+3 种基金Project(13JJ4057)supported by Natural Science Foundation of Hunan Province,ChinaProject(201408430155)supported by the Foundation of China Scholarship CouncilProject(2015319825120)supported by the Traffic Department of Applied Basic Research,ChinaProject(12K076)supported by the Open Foundation of Innovation Platform in Hunan Provincial Universities,China
文摘A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.
基金Post-Doctoral Innovative Projects of Shandong Province(No.200703072)the National Natural Science Foundation of China(No.50574053)
文摘In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.
文摘A review of the current status and progress of steel arch bridges in China is presented in this paper. The existing steel arch bridges in China were analyzed in terms of steel material, span, structure type, main arch rib form and construction method. The comparison with CFST arch bridges and RC arch bridges is also conducted. It is shown that steel arch bridge has gain rapid development in China since 2000, characterized by long main spans. As for the span, most of the steel arch bridges have a span less than 250 m, while when the span exceeds 350 m, steel arch bridges are strongly competitive against CFST or RC arch bridges. Over 80% of the bridges are through and half-through bridge types, and the arch ribs are hingeless structures. The rise-to-span ratios of the arches are mainly between 1:4 and 1: 5. Most of the arches use solid box ribs, and a small portion of arches use truss ribs in which box sections are mostly adopted for the truss members. The cantilever method and scaffolding method are the two main construction methods used, but some other construction methods have also been developed.
文摘Bridge piers are impacted by autos sometimes. The pier usually has not been destroyed after once impact by auto. But there are few research on damage which will affect pier's capability, and most relative studies have focused the problems on piers impacted by vessels. The methods involve mainly sutra experience theory, numerical analysis, and experimental method. Owing to the complicacy of the bridge pier impacted by a vessel, there are few research derived with the sutra mechanics model and the piers impacted by autos. The dynamic response is studied here under the assumption of the rigid-plastic small-deformation for the pier impacted by auto. According to the Parkes beam model, the rigid-plastic theoretical solution is deduced. The final deformation is calculated by a practical example for the pier impacted by auto.
文摘A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.
文摘The calculation of ultimate bearing capacity is a significant issue in the design of Concrete Filled Steel Tubular (CFST) arch bridges. Based on the space beam theory, this paper provides a calculation method for determining the ultimate strength of CFST structures. The accuracy of this method and the applicability of the stress-strain relationships were validated by comparing different existing confined concrete uniaxial constitutive relationships and experimental results. Comparison of these results indicated that this method using the confined concrete uniaxial stress-strain relationships can be used to calculate the ultimate strength and CFST behavior with satisfactory accuracy. The calculation results are stable and seldom affected by concrete con-stitutive relationships. The method is therefore valuable in the practice of engineering design. Finally, the ultimate strength of an arch bridge with span of 330 m was investigated by the proposed method and the nonlinear behavior was discussed.
基金Projects(51478049,51778068)supported by the National Natural Science Foundation of ChinaProject(14JJ2075,2019JJ40301)supported by the Hunan Natural Science Foundation of China+1 种基金Project(17A010)supported by the Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(2017GK4034)supported by the Major Technological Achievements Transformation Program of Hunan Strategic Emerging Industries of China
文摘Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.
基金The National Natural Science Foundation of China(Nos.51378122,51678146)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1680)
文摘To investigate the fatigue damage of epoxy asphalt pavement(EAP)under a heavy load and a d temperature load,the load-figure of the heavy load on the steel bridge deck pavement(SBDP)was simulated first,and the temperature distribution of SBDP during the temperature-fall period in winter was also calculated.Secondly,t e moving heavy load coupled W t the most unfavorable temperatre load was applied to the SBDP,and the tensile stress on the top of SBDP was calculated.Finally,the fatigue damage of EAP was evaluated considering the extreme situation of heavily overloaded and severe environments.The results show that botte heavy load and the temperature load during t e temperature-fall period c n increase the tensile stress on the top of SBDP significantly.In the exteme situation of heavily overloaded and severe environments,a fatigue crack is easily generated,and thus the SBDP should avoid t e coupling effects of the heavy loadand the temperature load in winter.
基金Project(51178193)supported by the National Natural Science Foundation of ChinaProject(2009 353-344-570)supported by the Ministry of Transport of ChinaProject(2010-02-051)supported by the Transportation Department of Guangdong Province,China
文摘With the digital image technology,a crack detection method of reinforced concrete bridge was studied for the performance assessment.The effects including the image gray level,pixel rate,noise filter,and edge detection were analyzed considering cracks qualities.A computer program was developed by visual C++6.0 programming language to detect the cracks,which was tested by 15cases of bridge video images.The results indicate that the relative error is within 6%for cracks larger than 0.3 mm cracks and it is less than 10%for crack width between 0.2 mm and 0.3 mm.In addition,for the crack below 0.1 mm,the relative error is more than30%because the bridge is in safe stage and it is very difficult to detect the actual width of crack.
基金Projects(20-JKKJ-17,18-JKKJ-05)supported by the Shanxi Communications Holding Group Co.,Ltd.,ChinaProject(41907239)supported by the National Natural Science Foundation of China+1 种基金Project(2020M670698)supported by the China Postdoctoral Science FoundationProject(2019L0295)supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China。
文摘Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature.
基金Project(2005k002-c-2) supported by the Science and Technology Development Program of Railways Department, China
文摘Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on comparisons of different deck schemes, construction sequences and measures, and ratios of reinforcement. The results show that the mechanical behavior of concrete slab gets worse with the increase of composite regions between steel beams and concrete slab. The deck scheme with the minimum composite region is recommended on condition that both strength and stiffness of the bridge meet design demands under service loads. Adopting in-situ-place construction method, concrete is suggested to be cast after removing the full-supported frameworks under the bridge. Thus, the axial tensile force of concrete slab caused by the first stage dead load is eliminated. Preloading the bridge before concrete casting and removing the load after the concrete reaching its design strength, the stresses of concrete slab caused by the second stage dead load and live load are further reduced or even eliminated. At last, with a high ratio of reinforcement more than 3%, the concrete stresses decrease obviously.
文摘Since 1990s, the use of deicing salts (i.e., chlorides) has dramatically increased in areas with heavy snowfall in Japan. As a result, the water mixed with salts has accelerated the damage of the reinforced concrete (hereafter, RC) structures. Recently conducted inspection results of RC bridges have reported that many of the damages or deteriorations are observed at the girder ends and abutments This is caused from the water leakage due to the aged expansion joints. In general, the cost for repairing the damaged RC structures is much higher than that for renewing the expansion joints. Therefore, to prevent these damages, we developed a new highly durable jointless system, named RC plug joint, for existing RC bridges with a bridge length less than 40 meters. The RC plug joint connects the abutment's backwall to the superstructure's deck using reinforcing steel bars and fiber reinforced concrete. The newly developed RC plug joint system can prevent water leakage and allow for a smooth ride of vehicles at the joint. This paper will explore and discuss the development of the RC plug joint, analysis of conducted investigations, and future installation methods.
文摘The response of a bridge superstructure under blast loading might depend largely on the extent of the local damage experienced due to close-in explosion threats. This paper investigates the local and structural response of box girder bridge decks strengthened using CFRP (carbon fiber reinforced polymers) under close-in detonations. Due to the lack of experimental research on this topic, the study is conducted using the explicit finite element computer program LS-DY-NA. The numerical study will be verified using the results of strengthened reinforced concrete slabs under field detonations. The blast load was assumed to be detonated above the bridge deck. The key parameters investigated are the charge size, and the strengthening location on the deck. This paper will present the results of this investigation and provides recommendations for predicting the local damage level based on the CFRP strengthening design under blast threat.
基金the Science and Technology Program for West Communication Construction of MOC(Grant No.2005ZB05)
文摘Considering the construction features of prestressed concrete bridge, the comprehensive evaluation method about the bridge damage conditions are studied. Particular attentions are paid on establishing a muhilevel evaluation model for damaged prestressed concrete bridge, and the evaluation indices of the model as well as the rating standards are defined in the model. A normal relative function about the evaluation indices of each element is developed to calculate the relative degree, and for each element which is no sub-level elements. When evaluating the elements in sub-item level or index level of the model, the weights of elements that are pertained to one element are adopted, taking account of their deterioration degree. At the same time, the dam- age conditions of bridge are characterized by relative degree, element evaluation scale and structural technology mark of bridge, so it agrees with Code for Maintenance of Highway Bridges and Culvers.
文摘Estimation of creep and shrinkage in concrete bridges is still approximate and uncertain. Over the years, Polish Codes for Concrete Structures partially adapted the CEB (Euro-International Concrete Committee)-FIP (International Federation for Prestressing) models used to predict creep and shrinkage of concrete. In the currently used Polish concrete bridge code, modified CEB-FIP 1970 recommendations are used. At the time the standard was implemented, it introduced simple methods for the evaluation of final creep coefficients and shrinkage strains. It was sufficient for simple bridge structures and concrete technology used at that times. As modern bridge structures have become increasingly complex with variable construction techniques and developing concrete technology, the implementation of Eurocode 2 is necessary as it gives more practical and accurate methods for the prediction of creep and shrinkage effects. A comparative analysis of the time-dependent deformation of concrete included in Eurocode 2 and in Polish Bridge Codes is pointing out that there is a necessity for more adequate criteria for the rapidly growing concrete bridge stock in Poland.