Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation be...Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation behaviors of heavy metals(HMs)contained in raw SS is a key issue on the safety and cleanness of above liquefaction process,which is explored in this study.The results show that pure ethanol facilitates the migration of HMs into biochar products.Pure water yields lower percentages of HMs in mobile/bioavailable speciation.Compared with sole solvent treatment,ethanol-water cosolvent causes a random/average effect on the distribution/transformation behaviors of HMs.After liquefaction of SS in pure water,the contamination degree of HMs is mitigated from high level(25.8(contamination factor))in raw SS to considerable grade(13.4)in biochar and the ecological risk is mitigated from moderate risk(164.5(risk index))to low risk(78.8).Liquefaction of SS in pure ethanol makes no difference to the pollution characteristics of HMs.The combined use of ethanol and water presents similar immobilization effects on HMs to pure water treatment.The contamination factor and risk index of HMs in biochars obtained in ethanol-water cosolvent treatment are 13.1-14.6(considerable grade)and 79.3-101.0(low risk),respectively.In order to further control the pollution of HMs,it is preferentially suggested to improve the liquefaction process of SS in ethanol-water mixed solvents by introducing conventional lignocellulosic/algal biomass,also known as co-liquefaction treatment.展开更多
The solubility of meropenem trihydrate in water+acetone mixtures and water+tetrahydrofuran mixtures were determined from T=(278.15 to 303.15) K by static method under atmospheric pressure.Effects of solvent compositio...The solubility of meropenem trihydrate in water+acetone mixtures and water+tetrahydrofuran mixtures were determined from T=(278.15 to 303.15) K by static method under atmospheric pressure.Effects of solvent composition and temperature on solubility of meropenem trihydrate were discussed.To extend the applicability of the solubility data,experimental solubility data in two kinds of binary solvent mixtures were correlated by the Apelblat equation and NIBS/Redlich–Kister model.It was found that the two models could satisfactorily correlate the experimental data and the Apelblat equation could give better correlation results.展开更多
The refrigerant mixture of ethanol aqueous was applied to the parallel type pulsating heat pipe (PHP). The operation characteristics of the PHP were analyzed by means of experiment and nonlinear chaotic theory. Moreov...The refrigerant mixture of ethanol aqueous was applied to the parallel type pulsating heat pipe (PHP). The operation characteristics of the PHP were analyzed by means of experiment and nonlinear chaotic theory. Moreover, the relationship between the running state and attractor was described. The results indicate that starting power, stable running power and dry burning transition power are about 64.08 W, 148.68 W and 234.0 W respectively. The cycle and amplitude of PHP initially decrease and then increase with the increasing power. However, the data are welldistributed in a certain range. The running state is in agreement with the attractors, and the changing process for attractors is as follows: the attractors first disperse in the whole phase space, then present mass status, and finally show band distribution.展开更多
Heat dissipation of electronic devices keeps as a tough issue for decades. As the most classical coolant in a convective heat transfer process, water has been widely adopted which however inherits with limited thermal...Heat dissipation of electronic devices keeps as a tough issue for decades. As the most classical coolant in a convective heat transfer process, water has been widely adopted which however inherits with limited thermal conductivity and relies heavily on mechanical pump. As an alternative, the room temperature liquid metal was increasingly emerging as an important coolant to realize much stronger enhanced heat transfer. However, its thermal capacity is somewhat lower than that of water, which may restrict the overall cooling performance. In addition, the high cost by taking too much amount of liquid metal into the device also turns out to be a big concern for practical purpose. Here, through combining the individual merits from both the liquid metal with high conductivity and water with large heat capacity, we proposed and demonstrated a new conceptual cooling de- vice that integrated hybrid coolants, radiator and annular channel together for chip thermal management. Particularly, the elec- trically induced actuation effect of liquid metal was introduced as the only flow driving strategy, which significantly simplified the whole system design. This enables the liquid metal sphere and its surrounding aqueous solution to be quickly accelerated to a large speed under only a very low electric voltage. Further experiments demonstrated that the cooling device could effective- ly maintain the temperature of a hotpot (3.15 W/cm2) below 55℃ with an extremely small power consumption rate (0.8 W). Sev- eral situations to simulate the practical working of the device were experimentally explored and a theoretical thermal resistance model was established to evaluate its heat transfer performance. The present work suggests an important way to make highly compact chip cooling device, which can be flexibly extended into a wide variety of engineering areas.展开更多
Till now,water based lubricants,especially aqueous solutions,have not been employed in the elastohydrodynamic lubrication(EHL)due to their poor film forming capability or low wear resistance.In this paper,we proposed ...Till now,water based lubricants,especially aqueous solutions,have not been employed in the elastohydrodynamic lubrication(EHL)due to their poor film forming capability or low wear resistance.In this paper,we proposed a method to develop water based lubricant:employing polyalkylene glycol solution as base stock to improve EHL film forming capability and using organic phosphate ester(DPZ)as anti-wear additive to improve wear resistance property.The lubricating properties of the mixed solutions,including load carrying capability,wear resistance property,friction reduction property,EHL film forming behavior,were investigated.The experimental results indicate that the mixed solution presents excellent lubricating properties,which make it a promising candidate in developing water based lubricants.展开更多
Ring opening of extremely hydrophobic epoxides with water, amines, sodium azide and thiophenol was realized in the mixture solvent of water and 1, 4-dioxane under reflux condition. Hot water was believed to act as a m...Ring opening of extremely hydrophobic epoxides with water, amines, sodium azide and thiophenol was realized in the mixture solvent of water and 1, 4-dioxane under reflux condition. Hot water was believed to act as a mild Bronsted acid catalyst in the epoxide-opening reactions.展开更多
基金Project(21707056) supported by the National Natural Science Foundation of ChinaProject(20151BAB213024) supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ14302) supported by the Scientific Research Fund of Jiangxi Provincial Education Department,China
文摘Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation behaviors of heavy metals(HMs)contained in raw SS is a key issue on the safety and cleanness of above liquefaction process,which is explored in this study.The results show that pure ethanol facilitates the migration of HMs into biochar products.Pure water yields lower percentages of HMs in mobile/bioavailable speciation.Compared with sole solvent treatment,ethanol-water cosolvent causes a random/average effect on the distribution/transformation behaviors of HMs.After liquefaction of SS in pure water,the contamination degree of HMs is mitigated from high level(25.8(contamination factor))in raw SS to considerable grade(13.4)in biochar and the ecological risk is mitigated from moderate risk(164.5(risk index))to low risk(78.8).Liquefaction of SS in pure ethanol makes no difference to the pollution characteristics of HMs.The combined use of ethanol and water presents similar immobilization effects on HMs to pure water treatment.The contamination factor and risk index of HMs in biochars obtained in ethanol-water cosolvent treatment are 13.1-14.6(considerable grade)and 79.3-101.0(low risk),respectively.In order to further control the pollution of HMs,it is preferentially suggested to improve the liquefaction process of SS in ethanol-water mixed solvents by introducing conventional lignocellulosic/algal biomass,also known as co-liquefaction treatment.
基金Supported by Tianjin Municipal Natural Science Foundation(16JCYBJC19500)China Ministry of Science and Major National Scientific Instrument Development Project(2016YFF0102503)
文摘The solubility of meropenem trihydrate in water+acetone mixtures and water+tetrahydrofuran mixtures were determined from T=(278.15 to 303.15) K by static method under atmospheric pressure.Effects of solvent composition and temperature on solubility of meropenem trihydrate were discussed.To extend the applicability of the solubility data,experimental solubility data in two kinds of binary solvent mixtures were correlated by the Apelblat equation and NIBS/Redlich–Kister model.It was found that the two models could satisfactorily correlate the experimental data and the Apelblat equation could give better correlation results.
基金Supported by Tianjin Science and Technology Development Strategy Research Program(No.06YFGZGX18300)
文摘The refrigerant mixture of ethanol aqueous was applied to the parallel type pulsating heat pipe (PHP). The operation characteristics of the PHP were analyzed by means of experiment and nonlinear chaotic theory. Moreover, the relationship between the running state and attractor was described. The results indicate that starting power, stable running power and dry burning transition power are about 64.08 W, 148.68 W and 234.0 W respectively. The cycle and amplitude of PHP initially decrease and then increase with the increasing power. However, the data are welldistributed in a certain range. The running state is in agreement with the attractors, and the changing process for attractors is as follows: the attractors first disperse in the whole phase space, then present mass status, and finally show band distribution.
基金supported by the Research Funding from the Technical Institute of Physics and ChemistryChinese Academy of Sciences
文摘Heat dissipation of electronic devices keeps as a tough issue for decades. As the most classical coolant in a convective heat transfer process, water has been widely adopted which however inherits with limited thermal conductivity and relies heavily on mechanical pump. As an alternative, the room temperature liquid metal was increasingly emerging as an important coolant to realize much stronger enhanced heat transfer. However, its thermal capacity is somewhat lower than that of water, which may restrict the overall cooling performance. In addition, the high cost by taking too much amount of liquid metal into the device also turns out to be a big concern for practical purpose. Here, through combining the individual merits from both the liquid metal with high conductivity and water with large heat capacity, we proposed and demonstrated a new conceptual cooling de- vice that integrated hybrid coolants, radiator and annular channel together for chip thermal management. Particularly, the elec- trically induced actuation effect of liquid metal was introduced as the only flow driving strategy, which significantly simplified the whole system design. This enables the liquid metal sphere and its surrounding aqueous solution to be quickly accelerated to a large speed under only a very low electric voltage. Further experiments demonstrated that the cooling device could effective- ly maintain the temperature of a hotpot (3.15 W/cm2) below 55℃ with an extremely small power consumption rate (0.8 W). Sev- eral situations to simulate the practical working of the device were experimentally explored and a theoretical thermal resistance model was established to evaluate its heat transfer performance. The present work suggests an important way to make highly compact chip cooling device, which can be flexibly extended into a wide variety of engineering areas.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB934200)the National Natural Science Foundation of China(Grant Nos.51075227,51222507)
文摘Till now,water based lubricants,especially aqueous solutions,have not been employed in the elastohydrodynamic lubrication(EHL)due to their poor film forming capability or low wear resistance.In this paper,we proposed a method to develop water based lubricant:employing polyalkylene glycol solution as base stock to improve EHL film forming capability and using organic phosphate ester(DPZ)as anti-wear additive to improve wear resistance property.The lubricating properties of the mixed solutions,including load carrying capability,wear resistance property,friction reduction property,EHL film forming behavior,were investigated.The experimental results indicate that the mixed solution presents excellent lubricating properties,which make it a promising candidate in developing water based lubricants.
基金financially supported by the National Natural Science Foundation of China (20402007, 20772065)Program for New Century Excellent Talents in University+1 种基金the 111 Project (B06005)the National High-tech Research & Development Program of China (863 Projcect, 2006AA020502)
文摘Ring opening of extremely hydrophobic epoxides with water, amines, sodium azide and thiophenol was realized in the mixture solvent of water and 1, 4-dioxane under reflux condition. Hot water was believed to act as a mild Bronsted acid catalyst in the epoxide-opening reactions.