We study quantum motion around a classical heteroclinic point of a single trapped ion interacting with a strong laser standing wave. We construct a set of exact coherent states of the quantum system and from the exact...We study quantum motion around a classical heteroclinic point of a single trapped ion interacting with a strong laser standing wave. We construct a set of exact coherent states of the quantum system and from the exact solutions reveal that quantum signatures of chaos can be induced by the adiabatic interaction between the trapped ion and the laser standing wave, where the quantum expectation values of position and momentum correspond to the classically chaotic orbit. The chaotic region on the phase space is illustrated. The energy crossing and quantum resonance in time evolution and the exponentially increased Heisenberg uncertainty are found. The results suggest a theoretical scheme for controlling the unstable regular and chaotic motions.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No.10575034the Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics of China under Grant No.T152504
文摘We study quantum motion around a classical heteroclinic point of a single trapped ion interacting with a strong laser standing wave. We construct a set of exact coherent states of the quantum system and from the exact solutions reveal that quantum signatures of chaos can be induced by the adiabatic interaction between the trapped ion and the laser standing wave, where the quantum expectation values of position and momentum correspond to the classically chaotic orbit. The chaotic region on the phase space is illustrated. The energy crossing and quantum resonance in time evolution and the exponentially increased Heisenberg uncertainty are found. The results suggest a theoretical scheme for controlling the unstable regular and chaotic motions.