High precision parameter estimation is very important for control system design and compensation. This paper utilizes the properties of chaotic system for parameter estimation. Theoretical analysis and experimental re...High precision parameter estimation is very important for control system design and compensation. This paper utilizes the properties of chaotic system for parameter estimation. Theoretical analysis and experimental results indicated that this method has extremely high sensitivity and resolving power. The most important contribution of this paper is apart from the traditional engineering viewpoint and actualizing parameter estimation just based on unstable chaotic systems.展开更多
In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy con...In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy contro-(ller,) and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response.展开更多
With the help of adaptive control theory to chaos synchronization, this paper provides a kind of controlling strategy that is adaptive control by which we can synchronize the Lorenz chaotic dynamical system. The theor...With the help of adaptive control theory to chaos synchronization, this paper provides a kind of controlling strategy that is adaptive control by which we can synchronize the Lorenz chaotic dynamical system. The theoretical analysis and simulation show using this controlling strategy, we can synchronize chaotic systems with the unknown parameters and the different initial conditions.展开更多
文摘High precision parameter estimation is very important for control system design and compensation. This paper utilizes the properties of chaotic system for parameter estimation. Theoretical analysis and experimental results indicated that this method has extremely high sensitivity and resolving power. The most important contribution of this paper is apart from the traditional engineering viewpoint and actualizing parameter estimation just based on unstable chaotic systems.
文摘In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy contro-(ller,) and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response.
文摘With the help of adaptive control theory to chaos synchronization, this paper provides a kind of controlling strategy that is adaptive control by which we can synchronize the Lorenz chaotic dynamical system. The theoretical analysis and simulation show using this controlling strategy, we can synchronize chaotic systems with the unknown parameters and the different initial conditions.