期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于分态的煤矿瓦斯浓度预测模型的研究 被引量:3
1
作者 安葳鹏 孙贝 《计算机工程与应用》 CSCD 2014年第20期233-238,243,共7页
由于影响瓦斯浓度变化的因素很多且内部关系复杂,传统的单一预测模型无法客观准确地反映其变化规律,导致预测精度较低。为有效提高瓦斯浓度预测精度,提出一种基于分态的预测模型。应用最大李雅普诺夫指数(Lyapunov指数)对瓦斯浓度时间... 由于影响瓦斯浓度变化的因素很多且内部关系复杂,传统的单一预测模型无法客观准确地反映其变化规律,导致预测精度较低。为有效提高瓦斯浓度预测精度,提出一种基于分态的预测模型。应用最大李雅普诺夫指数(Lyapunov指数)对瓦斯浓度时间序列的混沌特性进行识别,将其分为非混沌态和混沌态,接着分别采用改进的最小二乘支持向量机(LS-SVM)和基于径向基函数(Radial Basis Function,RBF)的神经网络进行建模和训练参数的优化,最终得到最佳预测模型并对瓦斯浓度时间序列进行预测。结果表明,分态预测模型有效提高了预测精度,降低了预测误差,用该方法可以更加客观准确地对瓦斯浓度进行预测。 展开更多
关键词 分态预测 相空间重构 混沌和非混沌 支持向量机 神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部