A method of controllable internal perturbation inside the chaotic map is proposed to solve the problem in chaotic systems caused by finite precision.A chaotic system can produce large amounts of initial-sensitive,non-...A method of controllable internal perturbation inside the chaotic map is proposed to solve the problem in chaotic systems caused by finite precision.A chaotic system can produce large amounts of initial-sensitive,non-cyclical pseudo-random sequences.However,the finite precision brings short period and odd points which obstruct application of chaos theory seriously in digital communication systems.Perturbation in chaotic systems is a possible efficient method for solving finite precision problems,but former researches are limited in uniform distribution maps.The proposed internal perturbation can work on both uniform and non-uniform distribution chaotic maps like Chebyshev map and Logistic map.By simulations,results show that the proposed internal perturbation extends sequence periods and eliminates the odd points,so as to improve chaotic performances of perturbed chaotic sequences.展开更多
基金Supported by the National Basic Research Program of China(No.2007CB310606)
文摘A method of controllable internal perturbation inside the chaotic map is proposed to solve the problem in chaotic systems caused by finite precision.A chaotic system can produce large amounts of initial-sensitive,non-cyclical pseudo-random sequences.However,the finite precision brings short period and odd points which obstruct application of chaos theory seriously in digital communication systems.Perturbation in chaotic systems is a possible efficient method for solving finite precision problems,but former researches are limited in uniform distribution maps.The proposed internal perturbation can work on both uniform and non-uniform distribution chaotic maps like Chebyshev map and Logistic map.By simulations,results show that the proposed internal perturbation extends sequence periods and eliminates the odd points,so as to improve chaotic performances of perturbed chaotic sequences.