With the unique erggdicity, i rregularity, and.special ability to avoid being trapped in local optima, chaos optimization has been a novel global optimization technique and has attracted considerable attention for a...With the unique erggdicity, i rregularity, and.special ability to avoid being trapped in local optima, chaos optimization has been a novel global optimization technique and has attracted considerable attention for application in various fields, such as nonlinear programming problems. In this article, a novel neural network nonlinear predic-tive control (NNPC) strategy baseed on the new Tent-map chaos optimization algorithm (TCOA) is presented. Thefeedforward neural network'is used as the multi-step predictive model. In addition, the TCOA is applied to perform the nonlinear rolling optimization to enhance the convergence and accuracy in the NNPC. Simulation on a labora-tory-scale liquid-level system is given to illustrate the effectiveness of the proposed method.展开更多
In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of ...In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.展开更多
基金Supported by the National Natural Science Foundation of China (No.60374037, No.60574036), the Program for New Century Excellent Talents in University of China (NCET), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20050055013), .and the 0pening Project Foundation of National Lab of Industrial Control Technology (No.0708008).
文摘With the unique erggdicity, i rregularity, and.special ability to avoid being trapped in local optima, chaos optimization has been a novel global optimization technique and has attracted considerable attention for application in various fields, such as nonlinear programming problems. In this article, a novel neural network nonlinear predic-tive control (NNPC) strategy baseed on the new Tent-map chaos optimization algorithm (TCOA) is presented. Thefeedforward neural network'is used as the multi-step predictive model. In addition, the TCOA is applied to perform the nonlinear rolling optimization to enhance the convergence and accuracy in the NNPC. Simulation on a labora-tory-scale liquid-level system is given to illustrate the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (No. 60474064), and the Natural Science Foundation of Zhejiang Province (No. Y105694), China
文摘In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.