期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于结合混沌纵横交叉的粒子群算法优化极限学习机的短期负荷预测 被引量:26
1
作者 殷豪 董朕 孟安波 《计算机应用研究》 CSCD 北大核心 2018年第7期2088-2091,共4页
为提高短期负荷预测精度,针对传统的单一负荷预测模型精度低以及常规智能算法在解决高维、多模复杂问题时容易陷入局部最优的问题进行了研究,提出了一种结合混沌纵横交叉的粒子群算法(CC-PSO)优化极限学习机(ELM)的短期负荷预测模型。EL... 为提高短期负荷预测精度,针对传统的单一负荷预测模型精度低以及常规智能算法在解决高维、多模复杂问题时容易陷入局部最优的问题进行了研究,提出了一种结合混沌纵横交叉的粒子群算法(CC-PSO)优化极限学习机(ELM)的短期负荷预测模型。ELM的泛化能力与其输入权值和隐含层偏置密切相关,采用结合混沌纵横交叉的粒子群算法优化ELM的输入权值与隐含层偏置,提高了ELM的泛化能力和预测精度。选择广东某地区实际电网负荷数据进行分析,研究结果表明,相对于BP神经网络和支持向量机,ELM具有更高的泛化能力和预测精度;CC-PSO相对于粒子群和遗传算法具有更高的全局搜索能力,CC-PSO-ELM模型具有较高的负荷预测精度。 展开更多
关键词 极限学习机 混沌纵横交叉 粒子群算法 预测精度 短期负荷预测
下载PDF
基于混沌CSO优化时序注意力GRU模型的超短期风电功率预测 被引量:21
2
作者 孟安波 陈顺 +4 位作者 王陈恩 丁伟锋 蔡涌烽 符嘉晋 周华敏 《电网技术》 EI CSCD 北大核心 2021年第12期4692-4700,共9页
高精度的风电功率预测对风电的并网运营至关重要。为提取风电功率输入序列隐含的时间信息,建立以门控循环单元为基础的预测模型;并在模型输入侧引入时序注意力机制,通过与输入进行加权的方式提高模型对关键历史时间节点的敏感性。为加... 高精度的风电功率预测对风电的并网运营至关重要。为提取风电功率输入序列隐含的时间信息,建立以门控循环单元为基础的预测模型;并在模型输入侧引入时序注意力机制,通过与输入进行加权的方式提高模型对关键历史时间节点的敏感性。为加速模型收敛,在训练的早期利用动态混沌纵横交叉算法优化预测模型的权值和阈值;同时,通过构造多指标共同作用并联合待优化参数的正则项作为目标适应度函数,以避免优化过程中模型泛化性问题的出现。以某风电场采集间隔为1h和10min的实测数据进行实验,结果表明所提组合预测方法性能优于其他对比模型,并对其有效性进行了验证。 展开更多
关键词 风电功率预测 门控循环单元 时序注意力机制 动态混沌纵横交叉算法 正则化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部