期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于可重叠混淆树的卷积神经网络 被引量:2
1
作者 刘运韬 李渊 刘逊韵 《计算机应用研究》 CSCD 北大核心 2022年第3期938-942,共5页
卷积神经网络(convolutional neural network, CNN)被广泛用于图像分类任务中。大多数现有的CNN模型都按照N路分类器的形式训练。然而,不同类别之间总存在差异性限制了N路分类器的分类能力。为了解决上述问题,提出的神经网络模型将混淆... 卷积神经网络(convolutional neural network, CNN)被广泛用于图像分类任务中。大多数现有的CNN模型都按照N路分类器的形式训练。然而,不同类别之间总存在差异性限制了N路分类器的分类能力。为了解决上述问题,提出的神经网络模型将混淆树结构(confusion tree, CT)和CNN模型结合,设计了性能更强的基于混淆树的卷积神经网络模型(confusion tree CNN,CT-CNN)。该模型首先建立一个混淆树来对类别之间的混淆性进行建模;然后,将混淆树的分层结构嵌入到CNN模型中,通过这种方式可以引导CNN的训练过程更加关注混淆性强的类别集合。该模型在公共数据集上进行了评估,实验结果证明,CT-CNN能克服大规模数据类别间的分类难度分布不均匀的局限,在复杂大规模的分类任务中取得稳定的优秀表现。 展开更多
关键词 深度学习 社区发现 像分类 混淆图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部