期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于部分数据的多级剪枝Obfs4混淆流量识别方法
1
作者 徐宸涵 黄河 +1 位作者 孙玉娥 杜扬 《计算机科学》 CSCD 北大核心 2024年第4期39-47,共9页
Obfs4混淆流量是匿名通信网络Tor的一种承载流量,因其强匿名的特性而被滥用于非法网络活动,因此识别Obfs4混淆流量对预防利用Tor网络进行的网络犯罪具有重要作用。现有识别策略往往侧重于分析Obfs4流量特征,将完整流样本利用机器学习或... Obfs4混淆流量是匿名通信网络Tor的一种承载流量,因其强匿名的特性而被滥用于非法网络活动,因此识别Obfs4混淆流量对预防利用Tor网络进行的网络犯罪具有重要作用。现有识别策略往往侧重于分析Obfs4流量特征,将完整流样本利用机器学习或深度学习技术进行精细化识别,但处于在线流识别的应用场景下时间开销偏高,且识别准确度在Obfs4应用间隔到达时间反检测技术(Inter-arrival Timing,IAT)后有所下降。为此,提出了一种基于部分数据的多级剪枝Obfs4混淆流量识别方法,仅收集每个流最先到达的少量数据包进行多轮快速过滤,并重点针对IAT模式特性设计识别方法,提升了Obfs4流量识别的效率和鲁棒性。该方法将识别过程分为握手阶段和加密通信阶段。在握手阶段,充分挖掘Obfs4握手数据包的隐含语义,进行随机性、时序和长度分布特征的粗粒度快速剪枝;在加密通信阶段,先对每个流的前若干数据包进行特征提取,并提高IAT相关特征的权重,最后利用XGBoost分类方法进行细粒度识别。实验结果表明,在包括了应用IAT技术的混淆流量的数据集上,使用流的前30~50个数据包能达到99%的正确率和精确度,平均每条流的处理时间在毫秒级。 展开更多
关键词 Obfs4 混淆流量识别 多级剪枝 间隔到达时间反检测 极致梯度提升
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部