Lane line detection is a fundamental step in applications like autonomous driving and intelligent traffic monitoring. Emerging applications today have higher requirements for accurate lane detection. In this paper, we...Lane line detection is a fundamental step in applications like autonomous driving and intelligent traffic monitoring. Emerging applications today have higher requirements for accurate lane detection. In this paper, we present a precise information extraction algorithm for lane lines. Specifically, with Gaussian Mixture Model(GMM), we solved the issue of lane line occlusion in multi-lane scenes. Then, Progressive Probabilistic Hough Transform(PPHT) was used for line segments detection. After K-Means clustering for line segments classification, we solved the problem of extracting precise information that includes left and right edges as well as endpoints of each lane line based on geometric characteristics. Finally, we fitted these solid and dashed lane lines respectively. Experimental results indicate that the proposed method performs better than the other methods in both single-lane and multi-lane scenarios.展开更多
A new kind of tunnel support was put forward on the basis of the anchor spraysupport principle. The mechanics of the new three-dimensional steel bar shotcrete liningsupport was studied and the structure's internal...A new kind of tunnel support was put forward on the basis of the anchor spraysupport principle. The mechanics of the new three-dimensional steel bar shotcrete liningsupport was studied and the structure's internal forces were analyzed. The model experiment was done relying on the industrial test. The conclusion of numerical calculationsproved that the ANSYS program is reasonable and creditable. It was compared to otherkinds of support that are commonly used in soft rock tunnels. The technique and economiccontrasts of the typical tunnel with support three-dimensional steel bar were completed.展开更多
The study on the special phenomenon,occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theor...The study on the special phenomenon,occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety,developing protective technology against fire and decreasing the number of fire accidents.In this paper,the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods.The calculation result has been demonstrated by the experiment data.The five stages of thermal ignition course,which are slow oxidation stage,rapid oxidation stage,fire stage,flameout stage and quench stage,have been firstly defined and accurately descried.According to the magnitude order of concentration,the species have been divided into six categories,which lay the foundation for explosion-proof design based on the role of different species.The influence of space scale on thermal ignition in small-scale space has been found,and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass,so that the progress of chemical reactions in the whole space are also changed.The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.展开更多
基金supported by the National Nature Science Foundation of China under Grant No.61502226the Jiangsu Provincial Transportation Science and Technology Project No.2017X04the Fundamental Research Funds for the Central Universities
文摘Lane line detection is a fundamental step in applications like autonomous driving and intelligent traffic monitoring. Emerging applications today have higher requirements for accurate lane detection. In this paper, we present a precise information extraction algorithm for lane lines. Specifically, with Gaussian Mixture Model(GMM), we solved the issue of lane line occlusion in multi-lane scenes. Then, Progressive Probabilistic Hough Transform(PPHT) was used for line segments detection. After K-Means clustering for line segments classification, we solved the problem of extracting precise information that includes left and right edges as well as endpoints of each lane line based on geometric characteristics. Finally, we fitted these solid and dashed lane lines respectively. Experimental results indicate that the proposed method performs better than the other methods in both single-lane and multi-lane scenarios.
文摘A new kind of tunnel support was put forward on the basis of the anchor spraysupport principle. The mechanics of the new three-dimensional steel bar shotcrete liningsupport was studied and the structure's internal forces were analyzed. The model experiment was done relying on the industrial test. The conclusion of numerical calculationsproved that the ANSYS program is reasonable and creditable. It was compared to otherkinds of support that are commonly used in soft rock tunnels. The technique and economiccontrasts of the typical tunnel with support three-dimensional steel bar were completed.
文摘The study on the special phenomenon,occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety,developing protective technology against fire and decreasing the number of fire accidents.In this paper,the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods.The calculation result has been demonstrated by the experiment data.The five stages of thermal ignition course,which are slow oxidation stage,rapid oxidation stage,fire stage,flameout stage and quench stage,have been firstly defined and accurately descried.According to the magnitude order of concentration,the species have been divided into six categories,which lay the foundation for explosion-proof design based on the role of different species.The influence of space scale on thermal ignition in small-scale space has been found,and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass,so that the progress of chemical reactions in the whole space are also changed.The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.