We conducted two-stage acidification-bioleaching experiments to probe the feasibility of bioleaching for a kind of mixed alkaline copper oxide and sulphide mineral. We used the uniform design method for data analysis ...We conducted two-stage acidification-bioleaching experiments to probe the feasibility of bioleaching for a kind of mixed alkaline copper oxide and sulphide mineral. We used the uniform design method for data analysis and experimental optimization, with initial pH value, pulp density, inoculation of bacteria and ferrous iron concentration selected as the influential factors. Polynomial regression shows that the four factors sequentially influence the copper recovery by 14.430%, 8.555%, 1.982% and 3.895%. Acid equilibrium in the bioleaching system is mainly influenced by alkaline gangue content, chemical reactions and bacterial activity. A maximal portion of refractory copper extracted reaches 71.08%. The dynamic analysis of copper recovery indicates that bioleaching goes through a lag leaching phase, prime leaching phase and leaching stationary phase corresponding to the growth phases of bacteria. Compared with the predicted value of 80.87%, the confirmatory experiment observes a 78.21% copper recovery under the optimal conditions of pH of 1.5, pulp density of 5%, bacteria inoculation of 30% and initial ferrous iron concentration of 9 g L-1. Results suggest that bioleaching is technically feasible to improving total copper recovery.展开更多
Cases of degradation of concrete associated to iron sulphides in aggregates were recently recognized in the Trois-Rivi6res area, Canada. The aggregate used to produce concrete was an anorthositic gabbro containing var...Cases of degradation of concrete associated to iron sulphides in aggregates were recently recognized in the Trois-Rivi6res area, Canada. The aggregate used to produce concrete was an anorthositic gabbro containing various proportions of pyrite, pyrrhotite, chalcopyrite and pentlandite. Quantitative microanalysis on sulphide minerals show that pyrrhotite contains small amount of Ni, Co, Cu and As substituting for Fe in the mineral structure. Considering element substitution, x value in the chemical formula (Fe~.xS) was calculated to 0.099 in the pyrrhotite studied. Petrographic examination of damaged concretes showed the presence of oxidized pyrrhotite. The observation of polished samples shows, in several cases, that the pyrite is intact while the pyrrhotite presents evident signs of oxidation. In the presence of water and oxygen, pyrrhotite oxidizes to form iron oxyhydroxides and sulphuric acid. The acid then reacts with the phases of the cement paste and provokes the formation of gypsum and ettringite. These minerals were observed by SEM-EDS (scanning electron microscope/energy dispersive x-ray spectrometer) and their precipitation causes a volume increase that creates expansion and cracking of the concrete.展开更多
There are sulfate and chloride ions corrosion and carbonation to concrete in coal mine. Based on taking test of accelerated carbonation, corrosion of 3.5% weight of NaCl solution and 5% weight of Na2SO4 solution of co...There are sulfate and chloride ions corrosion and carbonation to concrete in coal mine. Based on taking test of accelerated carbonation, corrosion of 3.5% weight of NaCl solution and 5% weight of Na2SO4 solution of coal mine concretes, durability of con- cretes which include spray concrete of C20,high performance concretes of C30 and C50 and effect of fly ash on durability have been studied. Results suggest that the coal mineral high performance concretes show good resistance capacities of carbonation, sulfate and chloride corrosion to meet the coal mine construction. And the higher the strength grade is, the better the resistance capacity of corrosion of carbonation is, chloride and sulfate. Moreover, fly ash improves resistance capacity of high performance concrete(HPC) to chloride and sulfate but decreases the resistance capacity of C30’s to carbonation and average dynamic modulus.展开更多
The solubility and hydrolysis of carbonyl sulfide in binary mixture of diethylene glycol diethyl ether and water are studied as a function of composition. The use of an aqueous solution of diethylene glycol diethyl et...The solubility and hydrolysis of carbonyl sulfide in binary mixture of diethylene glycol diethyl ether and water are studied as a function of composition. The use of an aqueous solution of diethylene glycol diethyl ether enhances the solubility and hydrolysis rate of carbonyl sulfide compared with that in pure water. The composition of the mixture with maximum hydrolysis rate varies with temperature. The thermophysical properties including density, viscosity, and surface tension as a function of composition at 20℃ under atmospheric pressure as well as liquid-liquid equilibrium (LLE) data over the temperature range from 28℃ to 90℃ are also measured for the binary mixture.展开更多
The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and dau...The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daugh- ter-beating inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-tem- perature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ^18O values of chalcopyrite- bearing quartz ranged from 4.96‰ to 5.86%0, with an average of 5.40%0. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from - 87‰ to - 107‰, with an average of - 97.86%0. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ^34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit.展开更多
The effect of mixed oxide support on the performance of Ni/ZnO in the reactive adsorption desulfurization(RADS) reaction was investigated in a fixed bed reactor by using thiophene as the sulfur-containing compound in ...The effect of mixed oxide support on the performance of Ni/ZnO in the reactive adsorption desulfurization(RADS) reaction was investigated in a fixed bed reactor by using thiophene as the sulfur-containing compound in the model gasoline. A series of oxide supports for Ni/ZnO were synthesized by the co-precipitation method and characterized by XRD, N_2-adsorption, TPR and NH_3-TPD techniques. It was found that the desulfurization capacity of Ni/ZnO was enhanced greatly when active components were supported on the proper mixed oxide. Ni/ZnO supported on oxides exhibited much higher desulfurization efficiency and sulfur adsorption capacity than the unsupported Ni/ZnO and the synthesized Ni/ZnO-SA adsorbent exhibited the highest efficiency for thiophene removal. The higher desulfurization activity and sulfur capacity of Ni/ZnO supported on SiO_2-Al_2O_3 with small particle size, high specific surface area and large pore volume could promote the high dispersion of active metal phase and the transfer of sulfur to ZnO with lower mass transfer resistance. γ-Al_2O_3 species could weaken the interaction of active phases and SiO_2 as well as could increase greatly the amount of weak acids. Therefore, these oxides could impose a great influence on the structure and chemical properties of the catalyst.展开更多
Inherent brittleness and low heat resistance are the two major obstacles that hinder the wide applications of poly(L-lactide)(PLLA). In this study,we report a fully biobased,highly toughened and heat-resistant PLL...Inherent brittleness and low heat resistance are the two major obstacles that hinder the wide applications of poly(L-lactide)(PLLA). In this study,we report a fully biobased,highly toughened and heat-resistant PLLA ternary blend,which was prepared by dynamic vulcanization of PLLA with poly(D-lactide)(PDLA) and an unsaturated bioelastomer(UBE). The results indicated that during dynamic vulcanization PDLA cocrystallized with PLLA to form stereocomplex(SC) crystallites,which not only enhanced the molecular entanglement but also accelerated the crystallization rate of PLLA matrix. With increase in the content of PDLA,the matrix molecular entanglement increased while phase-separation was enhanced,which enabled the impact strength to increase first and then decrease. The ternary blends containing 10 wt.% PDLA showed the highest impact strength. The presence of SC crystallites makes it possible to achieve a fully sustainable PLLA/VUB/PDLA ternary blend with highly crystalline matrix under conventional injection molding,due to the high nucleation efficiency of SC towards crystallization of PLLA. The highly crystalline ternary blend showed excellent heat resistance and better impact toughness than high impact polystyrene.展开更多
Oil and gas breakthroughs have been achieved in the Zhongshen 1(ZS1) and 1 C(ZS1 C) wells in Cambrian pre-salt from the Tarim Basin in northwest China. However, Middle and Lower Cambrian reservoirs reveal substantial ...Oil and gas breakthroughs have been achieved in the Zhongshen 1(ZS1) and 1 C(ZS1 C) wells in Cambrian pre-salt from the Tarim Basin in northwest China. However, Middle and Lower Cambrian reservoirs reveal substantial differences in the geochemistry and secondary alteration characteristics between the oils collected from the two wells. High concentrations of thiadiamondoids and diamondoidthiols, including thiatetramantanes, tetramantanethiols, thiapentamantanes, and pentamantanethiols, are detected in the organic sulfur compound fraction of concentrated oil collected from the ZS1 C well, which samples the Lower Cambrian Xiaoerbulake Formation. Higher diamondoids, such as tetramantanes, pentamantanes, hexamantanes, and cyclohexamantane, also occur in the saturate fractions of the concentrated ZS1 C oil. The presence of these compounds is verified by mass spectra analysis and comparison with previous studies. During thermochemical sulfate reduction(TSR), the cage of higher diamondoids is interpreted to open because of sulfur radicals forming open-cage higher diamondoid-like thiols, followed by cyclization that leads to the formation of high thiadiamondoids. Using D_(16)-adamantane as an internal standard, the concentrations of lower diamondoids and thiadiamondoids of non-concentrated Cambrian oil from well ZS1 C are 83874 and8578 μg/g, respectively, which are far higher than Cambrian oil from well ZS1 and most Ordovician oils in the Tarim Basin. The high concentrations of lower thiadiamondoids and occurrence of higher thiadiamondoids and diamondoidthiols support that the oil from well ZS1 C is a product of severe TSR alteration.展开更多
基金Funded by the National Natural Science Foundation of China (No. 50934002)New Century Excellent Talents (No. NECT-07-0070)Yunnan Provincial Programs for Science and Technology Innovation (No. 2007AD001)
文摘We conducted two-stage acidification-bioleaching experiments to probe the feasibility of bioleaching for a kind of mixed alkaline copper oxide and sulphide mineral. We used the uniform design method for data analysis and experimental optimization, with initial pH value, pulp density, inoculation of bacteria and ferrous iron concentration selected as the influential factors. Polynomial regression shows that the four factors sequentially influence the copper recovery by 14.430%, 8.555%, 1.982% and 3.895%. Acid equilibrium in the bioleaching system is mainly influenced by alkaline gangue content, chemical reactions and bacterial activity. A maximal portion of refractory copper extracted reaches 71.08%. The dynamic analysis of copper recovery indicates that bioleaching goes through a lag leaching phase, prime leaching phase and leaching stationary phase corresponding to the growth phases of bacteria. Compared with the predicted value of 80.87%, the confirmatory experiment observes a 78.21% copper recovery under the optimal conditions of pH of 1.5, pulp density of 5%, bacteria inoculation of 30% and initial ferrous iron concentration of 9 g L-1. Results suggest that bioleaching is technically feasible to improving total copper recovery.
文摘Cases of degradation of concrete associated to iron sulphides in aggregates were recently recognized in the Trois-Rivi6res area, Canada. The aggregate used to produce concrete was an anorthositic gabbro containing various proportions of pyrite, pyrrhotite, chalcopyrite and pentlandite. Quantitative microanalysis on sulphide minerals show that pyrrhotite contains small amount of Ni, Co, Cu and As substituting for Fe in the mineral structure. Considering element substitution, x value in the chemical formula (Fe~.xS) was calculated to 0.099 in the pyrrhotite studied. Petrographic examination of damaged concretes showed the presence of oxidized pyrrhotite. The observation of polished samples shows, in several cases, that the pyrite is intact while the pyrrhotite presents evident signs of oxidation. In the presence of water and oxygen, pyrrhotite oxidizes to form iron oxyhydroxides and sulphuric acid. The acid then reacts with the phases of the cement paste and provokes the formation of gypsum and ettringite. These minerals were observed by SEM-EDS (scanning electron microscope/energy dispersive x-ray spectrometer) and their precipitation causes a volume increase that creates expansion and cracking of the concrete.
基金Supported by the National (863) Plan Fund Project China (2003AA33X100)
文摘There are sulfate and chloride ions corrosion and carbonation to concrete in coal mine. Based on taking test of accelerated carbonation, corrosion of 3.5% weight of NaCl solution and 5% weight of Na2SO4 solution of coal mine concretes, durability of con- cretes which include spray concrete of C20,high performance concretes of C30 and C50 and effect of fly ash on durability have been studied. Results suggest that the coal mineral high performance concretes show good resistance capacities of carbonation, sulfate and chloride corrosion to meet the coal mine construction. And the higher the strength grade is, the better the resistance capacity of corrosion of carbonation is, chloride and sulfate. Moreover, fly ash improves resistance capacity of high performance concrete(HPC) to chloride and sulfate but decreases the resistance capacity of C30’s to carbonation and average dynamic modulus.
文摘The solubility and hydrolysis of carbonyl sulfide in binary mixture of diethylene glycol diethyl ether and water are studied as a function of composition. The use of an aqueous solution of diethylene glycol diethyl ether enhances the solubility and hydrolysis rate of carbonyl sulfide compared with that in pure water. The composition of the mixture with maximum hydrolysis rate varies with temperature. The thermophysical properties including density, viscosity, and surface tension as a function of composition at 20℃ under atmospheric pressure as well as liquid-liquid equilibrium (LLE) data over the temperature range from 28℃ to 90℃ are also measured for the binary mixture.
基金jointly supported by the Geological Survey of China (Grant No. 1212011140050)the National Natural Science Foundation of China (Grant No. 41663006)
文摘The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daugh- ter-beating inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-tem- perature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ^18O values of chalcopyrite- bearing quartz ranged from 4.96‰ to 5.86%0, with an average of 5.40%0. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from - 87‰ to - 107‰, with an average of - 97.86%0. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ^34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit.
基金financially supported by the National Natural Science Foundation of China(No.21276086)
文摘The effect of mixed oxide support on the performance of Ni/ZnO in the reactive adsorption desulfurization(RADS) reaction was investigated in a fixed bed reactor by using thiophene as the sulfur-containing compound in the model gasoline. A series of oxide supports for Ni/ZnO were synthesized by the co-precipitation method and characterized by XRD, N_2-adsorption, TPR and NH_3-TPD techniques. It was found that the desulfurization capacity of Ni/ZnO was enhanced greatly when active components were supported on the proper mixed oxide. Ni/ZnO supported on oxides exhibited much higher desulfurization efficiency and sulfur adsorption capacity than the unsupported Ni/ZnO and the synthesized Ni/ZnO-SA adsorbent exhibited the highest efficiency for thiophene removal. The higher desulfurization activity and sulfur capacity of Ni/ZnO supported on SiO_2-Al_2O_3 with small particle size, high specific surface area and large pore volume could promote the high dispersion of active metal phase and the transfer of sulfur to ZnO with lower mass transfer resistance. γ-Al_2O_3 species could weaken the interaction of active phases and SiO_2 as well as could increase greatly the amount of weak acids. Therefore, these oxides could impose a great influence on the structure and chemical properties of the catalyst.
基金supported by the National Science Foundation of China (51673158)the Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology),Ministry of Education (KFKT02)the Fundamental Research Funds for the Central Universities (XDJK2017A016 and XDJK2017C022)
文摘Inherent brittleness and low heat resistance are the two major obstacles that hinder the wide applications of poly(L-lactide)(PLLA). In this study,we report a fully biobased,highly toughened and heat-resistant PLLA ternary blend,which was prepared by dynamic vulcanization of PLLA with poly(D-lactide)(PDLA) and an unsaturated bioelastomer(UBE). The results indicated that during dynamic vulcanization PDLA cocrystallized with PLLA to form stereocomplex(SC) crystallites,which not only enhanced the molecular entanglement but also accelerated the crystallization rate of PLLA matrix. With increase in the content of PDLA,the matrix molecular entanglement increased while phase-separation was enhanced,which enabled the impact strength to increase first and then decrease. The ternary blends containing 10 wt.% PDLA showed the highest impact strength. The presence of SC crystallites makes it possible to achieve a fully sustainable PLLA/VUB/PDLA ternary blend with highly crystalline matrix under conventional injection molding,due to the high nucleation efficiency of SC towards crystallization of PLLA. The highly crystalline ternary blend showed excellent heat resistance and better impact toughness than high impact polystyrene.
基金supported by the National Natural Science Foundation of China (Grant No. 41772153)State Key Laboratory of Organic Geochemistry, GIGCAS (Grant No. SKLOG2017-02)+1 种基金National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2017ZX05005-002)SINOPEC Ministry of Science and Technology (Grant No. P16090, P17049-1)
文摘Oil and gas breakthroughs have been achieved in the Zhongshen 1(ZS1) and 1 C(ZS1 C) wells in Cambrian pre-salt from the Tarim Basin in northwest China. However, Middle and Lower Cambrian reservoirs reveal substantial differences in the geochemistry and secondary alteration characteristics between the oils collected from the two wells. High concentrations of thiadiamondoids and diamondoidthiols, including thiatetramantanes, tetramantanethiols, thiapentamantanes, and pentamantanethiols, are detected in the organic sulfur compound fraction of concentrated oil collected from the ZS1 C well, which samples the Lower Cambrian Xiaoerbulake Formation. Higher diamondoids, such as tetramantanes, pentamantanes, hexamantanes, and cyclohexamantane, also occur in the saturate fractions of the concentrated ZS1 C oil. The presence of these compounds is verified by mass spectra analysis and comparison with previous studies. During thermochemical sulfate reduction(TSR), the cage of higher diamondoids is interpreted to open because of sulfur radicals forming open-cage higher diamondoid-like thiols, followed by cyclization that leads to the formation of high thiadiamondoids. Using D_(16)-adamantane as an internal standard, the concentrations of lower diamondoids and thiadiamondoids of non-concentrated Cambrian oil from well ZS1 C are 83874 and8578 μg/g, respectively, which are far higher than Cambrian oil from well ZS1 and most Ordovician oils in the Tarim Basin. The high concentrations of lower thiadiamondoids and occurrence of higher thiadiamondoids and diamondoidthiols support that the oil from well ZS1 C is a product of severe TSR alteration.