The effects of the coagulation-flocculation process using polyaluminium chloride (PAC) and its aids on the removal of organics and nutrient in the combined sewage from Shanghai Zhuyuan First Municipal Wastewater Treat...The effects of the coagulation-flocculation process using polyaluminium chloride (PAC) and its aids on the removal of organics and nutrient in the combined sewage from Shanghai Zhuyuan First Municipal Wastewater Treatment Plant are studied. The coagulant aids include cationic polyacrylamide (PAM), polyvinyl alcohol (PVA), activated silica (AS) and a kind of polyelectrolyte called AN prepared by the authors. The coagulating solution was added to the glass jar holding 1 L wastewater and stirred to a uniform mixture which was stilled to let the supernatant turn out. The supernatant was analyzed to see the removal efficiencies of suspended solid (SS), chemical oxygen demand (COD), soluble chemical oxygen demand (S-COD), total phosphorus (TP) and orthophosphate (PO4 -P). It is found that PAC is efficient in reducing those five matters, PAM, PVA and 3? AN each faciliates the reduction of TP, SS, COD and S-COD and has little contribution to the removal of ammonia nitrigen and orthophosphate, and AS is noneffective at all. The coagulation-flocculation process with PAC has demonstrated applicable to the treatment of combined sewage in Shanghai, and it involves mainly the sweep coagulation mechanism and maybe some more complicated mechanism as well.展开更多
PBO materials possess super mechanical properties and high thermal and chemical resistance due to their special rigid-rod backbones with heterocyclie chemical structure and supermolecular microstrueture. But these str...PBO materials possess super mechanical properties and high thermal and chemical resistance due to their special rigid-rod backbones with heterocyclie chemical structure and supermolecular microstrueture. But these structures may be affected by a series of preparing technologies, among which the coagulant is even more important. In this paper the chemical and microstrueture changes of PBO materials coagulated with different solvents were investigated. Analyses of molecular weight and chemical structure of PBO coagulated indicate that the heteroeyclie ring of PBO will experience cleavage in coagulation and in this stage water plays an important role. The final structure of PBO materials may involve several intermediate structures lying between benzoxazole a,d the open ring. Wide-angle X-ray diffraction (WAXD) 20 scans and scanning probe microscope ( SPM ) show that the microstrueture of PBO materials eoagulated in solvents with different properties will change a lot and those coagulants with the smaller rate of diffusion like methanol can cause more ordered molecule alignment containing fewer voids.展开更多
In this paper, composite coagulants (PFS, PFSC05, PFSC1 and PFSC5), prepared by mixing polyferric sulfate (PFS) and cationic polyelectrolyte (CP) coagulants with different weight percent (Wv) of CP (Wp = 0%, ...In this paper, composite coagulants (PFS, PFSC05, PFSC1 and PFSC5), prepared by mixing polyferric sulfate (PFS) and cationic polyelectrolyte (CP) coagulants with different weight percent (Wv) of CP (Wp = 0%, 0.5%, 1% and 5%, respectively), were adopted to treat cyanide-containing wastewater. PFSC5 exhibited superior coagulation performances at optimal conditions: the removal of total cyanide (TCN) and chemical oxygen demand (COD) was 95%-97% and 50%-55%, respectively. The effects of CP on the properties and structure of flocs were investigated by laser diffraction instrument and small-angle laser light scattering (SALLS), respectively. The results show that the flocs of PFSC5 have higher growth rate, higher strength factor and lower recovery factor than other flocs. They are also much denser and more uniform owing to the higher fractal dimension (DO and less microflocs (10-100μm). Furthermore, the dense structure of the PFSC5 flocs can be restored after shear and is more resistant to hydraulic conditions. Particularly, detailed morphology evolution of the flocs was in-situ detected by on-line particle imaging. Due to strong ionic strength in wastewater, the CP in PFSC5 plays a significant role of adsorption, while the main mechanism of CP is electrostatic patch aggregation during the PFSC05 systems.展开更多
文摘The effects of the coagulation-flocculation process using polyaluminium chloride (PAC) and its aids on the removal of organics and nutrient in the combined sewage from Shanghai Zhuyuan First Municipal Wastewater Treatment Plant are studied. The coagulant aids include cationic polyacrylamide (PAM), polyvinyl alcohol (PVA), activated silica (AS) and a kind of polyelectrolyte called AN prepared by the authors. The coagulating solution was added to the glass jar holding 1 L wastewater and stirred to a uniform mixture which was stilled to let the supernatant turn out. The supernatant was analyzed to see the removal efficiencies of suspended solid (SS), chemical oxygen demand (COD), soluble chemical oxygen demand (S-COD), total phosphorus (TP) and orthophosphate (PO4 -P). It is found that PAC is efficient in reducing those five matters, PAM, PVA and 3? AN each faciliates the reduction of TP, SS, COD and S-COD and has little contribution to the removal of ammonia nitrigen and orthophosphate, and AS is noneffective at all. The coagulation-flocculation process with PAC has demonstrated applicable to the treatment of combined sewage in Shanghai, and it involves mainly the sweep coagulation mechanism and maybe some more complicated mechanism as well.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No. 2002AA305109) and Innovational Project in Space Flight Science and Technology(Grant No.2409035).
文摘PBO materials possess super mechanical properties and high thermal and chemical resistance due to their special rigid-rod backbones with heterocyclie chemical structure and supermolecular microstrueture. But these structures may be affected by a series of preparing technologies, among which the coagulant is even more important. In this paper the chemical and microstrueture changes of PBO materials coagulated with different solvents were investigated. Analyses of molecular weight and chemical structure of PBO coagulated indicate that the heteroeyclie ring of PBO will experience cleavage in coagulation and in this stage water plays an important role. The final structure of PBO materials may involve several intermediate structures lying between benzoxazole a,d the open ring. Wide-angle X-ray diffraction (WAXD) 20 scans and scanning probe microscope ( SPM ) show that the microstrueture of PBO materials eoagulated in solvents with different properties will change a lot and those coagulants with the smaller rate of diffusion like methanol can cause more ordered molecule alignment containing fewer voids.
基金supported by the National Natural Science Foundation of China(51108441)the National Key Technologies R&D Program of China(2011BAC06B09)the Special Foundation of the President of the Chinese Academy of Sciences
文摘In this paper, composite coagulants (PFS, PFSC05, PFSC1 and PFSC5), prepared by mixing polyferric sulfate (PFS) and cationic polyelectrolyte (CP) coagulants with different weight percent (Wv) of CP (Wp = 0%, 0.5%, 1% and 5%, respectively), were adopted to treat cyanide-containing wastewater. PFSC5 exhibited superior coagulation performances at optimal conditions: the removal of total cyanide (TCN) and chemical oxygen demand (COD) was 95%-97% and 50%-55%, respectively. The effects of CP on the properties and structure of flocs were investigated by laser diffraction instrument and small-angle laser light scattering (SALLS), respectively. The results show that the flocs of PFSC5 have higher growth rate, higher strength factor and lower recovery factor than other flocs. They are also much denser and more uniform owing to the higher fractal dimension (DO and less microflocs (10-100μm). Furthermore, the dense structure of the PFSC5 flocs can be restored after shear and is more resistant to hydraulic conditions. Particularly, detailed morphology evolution of the flocs was in-situ detected by on-line particle imaging. Due to strong ionic strength in wastewater, the CP in PFSC5 plays a significant role of adsorption, while the main mechanism of CP is electrostatic patch aggregation during the PFSC05 systems.