In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios ...In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.展开更多
The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified...The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified theoretical model. The model assumes that a section in the beam has a trilinear moment--curvature relationship characterized by three particular points, initial cracking of concrete, yielding of non-prestressed steel, and crushing of concrete or rupturing of prestressing tendons. Predictions from the model were compared with the limited available test data, and a reasonable agreement was obtained. A detailed parametric study of the behavior of the prestressed concrete beams with hybrid FRP and stainless steel reinforcements was conducted. It can be concluded that the deformability of the beam can be enhanced by increasing the ultimate compressive strain of concrete, unhonded length of tendon, percentage of compressive reinforcement and partial prestress ratio, and decreasing the effective prestress in tendons, and increasing in ultimate compressive strain of concrete is the most efficient one. The deformability of the beam is almost directly proportional to the concrete ultimate strain provided the failure mode is concrete crushing, even though the concrete ultimate strain has less influence on the load-carrying capacity.展开更多
The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, the energy absorbing members should absorb collision energy sufficiently but for the environmen...The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, the energy absorbing members should absorb collision energy sufficiently but for the environmentally-friendly aspect, the vehicle structure must be light weight in order to improve the fuel efficiency and reduce the tail gas emission. Therefore, the light weight of vehicle must be achieved in a securing safety status of crash. An aluminum or carbon fiber reinforced plastics (CFRP) is representative one of the light-weight materials. Based on the respective collapse behavior of aluminum and CFRP member, the collapse behavior of hybrid thin-walled member was evaluated. The hybrid members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties, such as strength and elasticity, change with its stacking condition, the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member were tested. The collapse mode and energy absorption capability of the hybrid thin-walled member were analyzed with the change of the fiber orientation angle and interface number.展开更多
This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in t...This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in the hinge portion.Beam specimens with moderate confinement were used in the study and tested under monotonic loading.Seven diverse types of FRCC including hybrid composites using fibers in different profiles and in different volumes are employed in this study.Companion specimens such as cylindrical specimens and prism specimens are also used to study the physical properties of composites employed.The moment?curvature,stiffness behavior,ductility,crack pattern and modified flexural damage ratio are the main factors considered in this study to observe the efficacy of the employed hybrid composites.The experimental outputs demonstrate the improved post yield behavior with less rate of stiffness degradation and better damage tolerance capacity than conventional technique.展开更多
This paper introduces, for applications in the mining industry, an innovative hybrid column form which consists of an inner steel tube, an outer fibre-reinforced polymer(FRP) tube and an annular concrete infill betwee...This paper introduces, for applications in the mining industry, an innovative hybrid column form which consists of an inner steel tube, an outer fibre-reinforced polymer(FRP) tube and an annular concrete infill between them. The two tubes may be concentrically placed to produce a section form more suitable for columns, or eccentrically placed to produce a section form more suitable for beams. The FRP is combined with steel and concrete in these hybrid structural members in such a way that the advantages of FRP are appropriately exploited while its disadvantages are minimized. As a result, these hybrid members possess excellent corrosion resistance as well as excellent ductility and seismic resistance. This paper summarizes existing research on this new form of structural members, and discusses their potential applications in mining infrastructure before presenting a summary of the recent and current studies at University of Wollongong(UOW) on their structural behaviour and design.展开更多
In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.F...In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.Five temperatures of 20,50,100,200 and 400℃ were set to evaluate the residual compressive,tensile and flexural behaviors of hybrid and mono fiber ECC.It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness,compared to brittle failure of mono fiber ECC heated to 400℃.The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200℃,and delayed the sharp reduction of strength to 400℃.Under flexural load,the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100℃.Further,the scanning electron microscopy(SEM)results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC.This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance.展开更多
Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axi...Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axis are 0°and 30°.The thickness of concrete target is 200,mm and the compression strength is 30 MPa.The experimental results indicate that the strength of composite material structure is high.Composite projectile can go through concrete tar-get without fiber segregation and breakage.The percent fill is 18.5% in the composite material projectile.It is about twice as that of metal projectile,if the density of metal is taken as 7.8,g/cm3.Comparing with metal projectile,low-density,high-strength composite material can lessen projec-tile weight,improve charge-weight ratio of detonator and enhance destructive powder.展开更多
This paper demonstrates the possibility of combining both glass and carbon FRP (Fibre Reinforced Polymer) composite materials with a low-cost construction material (i.e. concrete) in a hybrid system that brings hi...This paper demonstrates the possibility of combining both glass and carbon FRP (Fibre Reinforced Polymer) composite materials with a low-cost construction material (i.e. concrete) in a hybrid system that brings higher performance levels to the design of lightweight, corrosion resistant, yet inexpensive beams providing acceptable structural properties. The objective of the research is to investigate the behaviour of a hybrid composite section under flexure. The hybrid section consists of a top concrete slab, Glass Fibre Reinforced Polymer (GFRP) beam section and Carbon Fibre Reinforced Polymer (CFRP) laminate on the extreme underside. This maximizes the benefits of each material, that is: high tensile strength of CFRP, compressive strength and low cost of concrete, light weight and lower cost of GFRP, and high corrosion resistance of all components. Three beam samples were manufactured and tested to failure while monitoring deflections and strains. By adding CFRP layers under the concrete-GFRP composite beam increases the bending strength and reduces the deflection. The most important factor in the proposed strengthening technique of GFRP-concrete composite beams by using CFRP is the adhesive material that bonds the CFRP to the GFRP. Any weakness in CFRP-GFRP bond may cause brittle failure of the beam. The study results indicate the benefits of using hybrid FRP-concrete beams to increase flexural load carrying capacity and beam stiffness and provide a numerical model that can be further developed to model more advanced material arrangements in the future. The outcome of this research provides information for both designers and researchers in the field of FRP composites.展开更多
By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitt...By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitting effect declines. In the case of same SR,the stability coefficient (SC) for the reinforced concrete(RC) columns with CFRP is much less than that without CFRP. There is 20% increase of stable bearing capacity to the former as compared with the latter when the SR in less than 17.5. The study summarized the simplified formula for SC,which provides a reference for engineering designers.展开更多
We proposed a bilinearity constitutive curve model of fiber reinforced polymer(FRP) confined concrete which includes a parabola in the first stage and a straight line in the second stage. The FRP-confined concrete has...We proposed a bilinearity constitutive curve model of fiber reinforced polymer(FRP) confined concrete which includes a parabola in the first stage and a straight line in the second stage. The FRP-confined concrete has powerful confinement status and weak confinement status leading to different equations of parabola. We analyzed the impacts of factors such as confinement ratio and restrain stiffness on confined concrete compressive strength,ultimate strain and other control parameters through finite element analysis. The results show that the confinement ratio determines the confinement status,and the increase of the confinement ratio has a limited capacity to increase the compressive strength. The deformation of confined concrete is influenced by restrain stiffness. The stronger the restrain stiffness is,the less the lateral deformation is and the greater ultimate axial strain will be. The consideration of equivalent section coefficient kse is needed in the non-circular section confined concrete. We analyzed the results and proposed boundary values of strong and weak confinement styles,a peak/inflection point stress and strain model,and a compressive strength and ultimate strain model.展开更多
Confinement is an effective method in order to increase concrete strength and its ductility capacity. To improve the structural properties of lightweight concrete, Fiber Reinforced Polymer (FRP) can be used to confi...Confinement is an effective method in order to increase concrete strength and its ductility capacity. To improve the structural properties of lightweight concrete, Fiber Reinforced Polymer (FRP) can be used to confine the concrete. Effect of Fiber Reinforced Polymer on confined lightweight concrete elements is one of the most important research fields. It is generally accepted that the strength and stiffness of confined concrete is higher than unconfined one. In this research, behavior of confined and unconfined concrete specimens under uniaxial loading has been studied. In order to decrease stress concentration corners of specimens were chamfered to a radius of 5 to 25 mm. The Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) were used to confine lightweight concrete specimens. The stress-strain curve of specimens is compared.展开更多
Carbon fiber reinforced polymer (CFRP) bars were prestressed for the structural strengthening of 8 T-shaped rein-forced concrete (RC) beams of a 21-year-old bridge in China. The ultimate bearing capacity of the existi...Carbon fiber reinforced polymer (CFRP) bars were prestressed for the structural strengthening of 8 T-shaped rein-forced concrete (RC) beams of a 21-year-old bridge in China. The ultimate bearing capacity of the existing bridge after retrofit was discussed on the basis of concrete structures theory. The flexural strengths of RC beams strengthened with CFRP bars were controlled by the failure of concrete in compression and a prestressing method was applied in the retrofit. The field construction processes of strengthening with CFRP bars-including grouting cracks, cutting groove, grouting epoxy and embedding CFRP bars, surface treating, banding with the U-type CFRP sheets, releasing external prestressed steel tendons-were introduced in detail. In order to evaluate the effectiveness of this strengthening method, field tests using vehicles as live load were applied before and after the retrofit. The test results of deflection and concrete strain of the T-shaped beams with and without strengthening show that the capacity of the repaired bridge, including the bending strength and stiffness, is enhanced. The measurements of crack width also indicate that this strengthening method can enhance the durability of bridges. Therefore, the proposed strengthening technology is feasible and effective.展开更多
Geopolymer is produced through the polymerization of active aluminosilicate material with an alkaline activator,leading to the formation of a green,inorganic polymer binder.Geopolymer concrete(GPC)has become a promisi...Geopolymer is produced through the polymerization of active aluminosilicate material with an alkaline activator,leading to the formation of a green,inorganic polymer binder.Geopolymer concrete(GPC)has become a promising low-carbon alternative to traditional Portland cement-based concrete(OPC).GPC-bonded reinforcing bars offer a promising alternative for concrete structures,boasting excellent geopolymer binder/reinforcement bonding and superior corrosion and high-temperature resistance compared to Portland cement.However,due to differences in the production process of GPC,there are distinct engineering property variations,including bonding characteristics.This literature review provides an examination of the manufacturing procedures of GPC,encompassing source materials,mix design,curing regimes,and other factors directly influencing concrete properties.Additionally,it delves into the bond mechanism,bond tests,and corresponding results that represent the bond characteristics.The main conclusions are that GPC generally has superior mechanical properties and bond performance compared to ordinary Portland cement concrete(OPC).However,proper standardization is needed for its production and performance tests to limit the contradictory results in the lab and on site.展开更多
基金The National Natural Science Foundation of China(No.51108238)
文摘In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.
基金Project (50478502) supported by the National Natural Science Foundation of China
文摘The full-range behavior of partially bonded, together with partially prestressed concrete beams containing fiber reinforced polymer (FRP) tendons and stainless steel reinforcing bars was simulated using a simplified theoretical model. The model assumes that a section in the beam has a trilinear moment--curvature relationship characterized by three particular points, initial cracking of concrete, yielding of non-prestressed steel, and crushing of concrete or rupturing of prestressing tendons. Predictions from the model were compared with the limited available test data, and a reasonable agreement was obtained. A detailed parametric study of the behavior of the prestressed concrete beams with hybrid FRP and stainless steel reinforcements was conducted. It can be concluded that the deformability of the beam can be enhanced by increasing the ultimate compressive strain of concrete, unhonded length of tendon, percentage of compressive reinforcement and partial prestress ratio, and decreasing the effective prestress in tendons, and increasing in ultimate compressive strain of concrete is the most efficient one. The deformability of the beam is almost directly proportional to the concrete ultimate strain provided the failure mode is concrete crushing, even though the concrete ultimate strain has less influence on the load-carrying capacity.
文摘The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, the energy absorbing members should absorb collision energy sufficiently but for the environmentally-friendly aspect, the vehicle structure must be light weight in order to improve the fuel efficiency and reduce the tail gas emission. Therefore, the light weight of vehicle must be achieved in a securing safety status of crash. An aluminum or carbon fiber reinforced plastics (CFRP) is representative one of the light-weight materials. Based on the respective collapse behavior of aluminum and CFRP member, the collapse behavior of hybrid thin-walled member was evaluated. The hybrid members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties, such as strength and elasticity, change with its stacking condition, the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member were tested. The collapse mode and energy absorption capability of the hybrid thin-walled member were analyzed with the change of the fiber orientation angle and interface number.
基金support of Reliance Industries and Bakaert Industries, India for providing fiber for the experimental work
文摘This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in the hinge portion.Beam specimens with moderate confinement were used in the study and tested under monotonic loading.Seven diverse types of FRCC including hybrid composites using fibers in different profiles and in different volumes are employed in this study.Companion specimens such as cylindrical specimens and prism specimens are also used to study the physical properties of composites employed.The moment?curvature,stiffness behavior,ductility,crack pattern and modified flexural damage ratio are the main factors considered in this study to observe the efficacy of the employed hybrid composites.The experimental outputs demonstrate the improved post yield behavior with less rate of stiffness degradation and better damage tolerance capacity than conventional technique.
基金the University of Wollongong through the 2013 URC Small Grants Scheme
文摘This paper introduces, for applications in the mining industry, an innovative hybrid column form which consists of an inner steel tube, an outer fibre-reinforced polymer(FRP) tube and an annular concrete infill between them. The two tubes may be concentrically placed to produce a section form more suitable for columns, or eccentrically placed to produce a section form more suitable for beams. The FRP is combined with steel and concrete in these hybrid structural members in such a way that the advantages of FRP are appropriately exploited while its disadvantages are minimized. As a result, these hybrid members possess excellent corrosion resistance as well as excellent ductility and seismic resistance. This paper summarizes existing research on this new form of structural members, and discusses their potential applications in mining infrastructure before presenting a summary of the recent and current studies at University of Wollongong(UOW) on their structural behaviour and design.
基金Project(51808545)supported by the National Natural Science Foundation of ChinaProject(8184083)supported by the Beijing Natural Science Foundation,ChinaProject(2021YQLJ05)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.Five temperatures of 20,50,100,200 and 400℃ were set to evaluate the residual compressive,tensile and flexural behaviors of hybrid and mono fiber ECC.It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness,compared to brittle failure of mono fiber ECC heated to 400℃.The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200℃,and delayed the sharp reduction of strength to 400℃.Under flexural load,the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100℃.Further,the scanning electron microscopy(SEM)results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC.This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance.
基金Supported by Arm Equipment Exploration Project(No.6130516).
文摘Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axis are 0°and 30°.The thickness of concrete target is 200,mm and the compression strength is 30 MPa.The experimental results indicate that the strength of composite material structure is high.Composite projectile can go through concrete tar-get without fiber segregation and breakage.The percent fill is 18.5% in the composite material projectile.It is about twice as that of metal projectile,if the density of metal is taken as 7.8,g/cm3.Comparing with metal projectile,low-density,high-strength composite material can lessen projec-tile weight,improve charge-weight ratio of detonator and enhance destructive powder.
文摘This paper demonstrates the possibility of combining both glass and carbon FRP (Fibre Reinforced Polymer) composite materials with a low-cost construction material (i.e. concrete) in a hybrid system that brings higher performance levels to the design of lightweight, corrosion resistant, yet inexpensive beams providing acceptable structural properties. The objective of the research is to investigate the behaviour of a hybrid composite section under flexure. The hybrid section consists of a top concrete slab, Glass Fibre Reinforced Polymer (GFRP) beam section and Carbon Fibre Reinforced Polymer (CFRP) laminate on the extreme underside. This maximizes the benefits of each material, that is: high tensile strength of CFRP, compressive strength and low cost of concrete, light weight and lower cost of GFRP, and high corrosion resistance of all components. Three beam samples were manufactured and tested to failure while monitoring deflections and strains. By adding CFRP layers under the concrete-GFRP composite beam increases the bending strength and reduces the deflection. The most important factor in the proposed strengthening technique of GFRP-concrete composite beams by using CFRP is the adhesive material that bonds the CFRP to the GFRP. Any weakness in CFRP-GFRP bond may cause brittle failure of the beam. The study results indicate the benefits of using hybrid FRP-concrete beams to increase flexural load carrying capacity and beam stiffness and provide a numerical model that can be further developed to model more advanced material arrangements in the future. The outcome of this research provides information for both designers and researchers in the field of FRP composites.
文摘By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitting effect declines. In the case of same SR,the stability coefficient (SC) for the reinforced concrete(RC) columns with CFRP is much less than that without CFRP. There is 20% increase of stable bearing capacity to the former as compared with the latter when the SR in less than 17.5. The study summarized the simplified formula for SC,which provides a reference for engineering designers.
基金Funded by the Science and Technology Plan Project (No. 62065) of Guangzhou.
文摘We proposed a bilinearity constitutive curve model of fiber reinforced polymer(FRP) confined concrete which includes a parabola in the first stage and a straight line in the second stage. The FRP-confined concrete has powerful confinement status and weak confinement status leading to different equations of parabola. We analyzed the impacts of factors such as confinement ratio and restrain stiffness on confined concrete compressive strength,ultimate strain and other control parameters through finite element analysis. The results show that the confinement ratio determines the confinement status,and the increase of the confinement ratio has a limited capacity to increase the compressive strength. The deformation of confined concrete is influenced by restrain stiffness. The stronger the restrain stiffness is,the less the lateral deformation is and the greater ultimate axial strain will be. The consideration of equivalent section coefficient kse is needed in the non-circular section confined concrete. We analyzed the results and proposed boundary values of strong and weak confinement styles,a peak/inflection point stress and strain model,and a compressive strength and ultimate strain model.
文摘Confinement is an effective method in order to increase concrete strength and its ductility capacity. To improve the structural properties of lightweight concrete, Fiber Reinforced Polymer (FRP) can be used to confine the concrete. Effect of Fiber Reinforced Polymer on confined lightweight concrete elements is one of the most important research fields. It is generally accepted that the strength and stiffness of confined concrete is higher than unconfined one. In this research, behavior of confined and unconfined concrete specimens under uniaxial loading has been studied. In order to decrease stress concentration corners of specimens were chamfered to a radius of 5 to 25 mm. The Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) were used to confine lightweight concrete specimens. The stress-strain curve of specimens is compared.
基金supported by the National Hi-Tech Research and Development (863) Program of China (No. 2007AA04Z437)the National Natural Science Foundation of China (No. 50808158)the Zhejiang Provincial Natural Science Foundation of China (No. Y107049)
文摘Carbon fiber reinforced polymer (CFRP) bars were prestressed for the structural strengthening of 8 T-shaped rein-forced concrete (RC) beams of a 21-year-old bridge in China. The ultimate bearing capacity of the existing bridge after retrofit was discussed on the basis of concrete structures theory. The flexural strengths of RC beams strengthened with CFRP bars were controlled by the failure of concrete in compression and a prestressing method was applied in the retrofit. The field construction processes of strengthening with CFRP bars-including grouting cracks, cutting groove, grouting epoxy and embedding CFRP bars, surface treating, banding with the U-type CFRP sheets, releasing external prestressed steel tendons-were introduced in detail. In order to evaluate the effectiveness of this strengthening method, field tests using vehicles as live load were applied before and after the retrofit. The test results of deflection and concrete strain of the T-shaped beams with and without strengthening show that the capacity of the repaired bridge, including the bending strength and stiffness, is enhanced. The measurements of crack width also indicate that this strengthening method can enhance the durability of bridges. Therefore, the proposed strengthening technology is feasible and effective.
基金supported by the ongoing projects provided by the National Key Research and Development Program(2021YFB2600704)the National Natural Science Foundation of China(52108223,U22A20244)+3 种基金the Outstanding Youth Fund of Shandong Province(ZR2021JQ17)the Natural Science Foundation of Shandong Province(ZR2020QE249)the 111 Project(D16006)the First-Class Discipline Project funded by the Education Department of Shandong Province are gratefully acknowledged.
文摘Geopolymer is produced through the polymerization of active aluminosilicate material with an alkaline activator,leading to the formation of a green,inorganic polymer binder.Geopolymer concrete(GPC)has become a promising low-carbon alternative to traditional Portland cement-based concrete(OPC).GPC-bonded reinforcing bars offer a promising alternative for concrete structures,boasting excellent geopolymer binder/reinforcement bonding and superior corrosion and high-temperature resistance compared to Portland cement.However,due to differences in the production process of GPC,there are distinct engineering property variations,including bonding characteristics.This literature review provides an examination of the manufacturing procedures of GPC,encompassing source materials,mix design,curing regimes,and other factors directly influencing concrete properties.Additionally,it delves into the bond mechanism,bond tests,and corresponding results that represent the bond characteristics.The main conclusions are that GPC generally has superior mechanical properties and bond performance compared to ordinary Portland cement concrete(OPC).However,proper standardization is needed for its production and performance tests to limit the contradictory results in the lab and on site.