The effects of two different hydrophilic additives and two solvents on the membrane morphological structure,permeability property and anti-fouling performances of cellulose acetate(CA) ultrafiltration membranes were i...The effects of two different hydrophilic additives and two solvents on the membrane morphological structure,permeability property and anti-fouling performances of cellulose acetate(CA) ultrafiltration membranes were investigated. During the phase-inversion process, cellulose acetate was selected as a membrane forming polymer; polyethylene glycol(PEG) and polyvinyl pyrrolidone(PVP) were used as additives; acetone(Ac): N,N-Dimethylacetamide(DMAc) and N, N-Dimethylformamide(DMF) were used as solvents; and deionized(DI)water was used in the coagulation bath. All the prepared membranes were characterized in terms of hydraulic permeability(Pm), membrane resistance, average pore radius, and hydrophilicity. The top surface and crosssectional view of the prepared membranes were also observed by using field emission scanning electron microscopy. Membrane fouling and rejection experimentations were done using a stirred batch-cell filtration set-up.The experimental studies of fouling/rinsing cycles, rejection, and permeate fluxes were used to investigate the effect of PEG and PVP additives and effect of the two solvents on the fabricated membranes using bovine serum albumin(BSA) as a model protein.展开更多
Many kinds of feed additives (e.g., probiotics, prebiotics, antibiotics, etc.) can be used in chicken diets to stimulate intestinal morphological maturation and, consequently, intestinal function. The aim of this tr...Many kinds of feed additives (e.g., probiotics, prebiotics, antibiotics, etc.) can be used in chicken diets to stimulate intestinal morphological maturation and, consequently, intestinal function. The aim of this trial was to investigate the possibility that natural zeolite including plant extract (ZEM) could encourage the hypertrophy of intestinal villi and the absorptive function of epithelial cells in broiler chickens. At 7 days old, 64 male Marshall Chunky broilers were divided into four groups, each with four replicates of four chickens. The birds were fed a basal mash diet supplemented with ZEM at 0% (control), 0.05%, 0.1%, and 0.2% for 42 days. At 49 days old, four chickens from each treatment were killed to obtain intestinal samples. Morphological intestinal assessment was conducted using both a light and a scanning electron microscope. A tendency to increased villus height and cell area could be observed throughout the intestinal segments of the broilers fed ZEM. Particularly, the villus height in the duodenum was significantly increased (P 〈 0.05) in the 0.05% ZEM group when compared with the control group. The area of the villus cells tended to be higher in the ZEM groups in all intestinal regions and showed a significant increase (P 〈 0.05) in the ileal part of the 0.2% ZEM group. Also, the assessment of cells mitosis in the intestinal crypts showed significantly higher numbers (P 〈 0.05) in all levels of ZEM groups in the duodenum and a tendency to increase in value in the jejunum and ileum, as compared with the control group. More protuberated cells and multi-cell clusters were found in the ZEM groups than in the control group, resulting in a rough cellular surface. In conclusion, the present study might suggest that the intestinal villi and epithelial cells on the villus apical surface are hypertrophied in the ZEM groups, and that intestinal villi adapt to enhance their absorption capacity by increasing the absorptive surface area. These results are indicated that ZEM can provide effective nutritive value when used as a feed additive.展开更多
文摘The effects of two different hydrophilic additives and two solvents on the membrane morphological structure,permeability property and anti-fouling performances of cellulose acetate(CA) ultrafiltration membranes were investigated. During the phase-inversion process, cellulose acetate was selected as a membrane forming polymer; polyethylene glycol(PEG) and polyvinyl pyrrolidone(PVP) were used as additives; acetone(Ac): N,N-Dimethylacetamide(DMAc) and N, N-Dimethylformamide(DMF) were used as solvents; and deionized(DI)water was used in the coagulation bath. All the prepared membranes were characterized in terms of hydraulic permeability(Pm), membrane resistance, average pore radius, and hydrophilicity. The top surface and crosssectional view of the prepared membranes were also observed by using field emission scanning electron microscopy. Membrane fouling and rejection experimentations were done using a stirred batch-cell filtration set-up.The experimental studies of fouling/rinsing cycles, rejection, and permeate fluxes were used to investigate the effect of PEG and PVP additives and effect of the two solvents on the fabricated membranes using bovine serum albumin(BSA) as a model protein.
文摘Many kinds of feed additives (e.g., probiotics, prebiotics, antibiotics, etc.) can be used in chicken diets to stimulate intestinal morphological maturation and, consequently, intestinal function. The aim of this trial was to investigate the possibility that natural zeolite including plant extract (ZEM) could encourage the hypertrophy of intestinal villi and the absorptive function of epithelial cells in broiler chickens. At 7 days old, 64 male Marshall Chunky broilers were divided into four groups, each with four replicates of four chickens. The birds were fed a basal mash diet supplemented with ZEM at 0% (control), 0.05%, 0.1%, and 0.2% for 42 days. At 49 days old, four chickens from each treatment were killed to obtain intestinal samples. Morphological intestinal assessment was conducted using both a light and a scanning electron microscope. A tendency to increased villus height and cell area could be observed throughout the intestinal segments of the broilers fed ZEM. Particularly, the villus height in the duodenum was significantly increased (P 〈 0.05) in the 0.05% ZEM group when compared with the control group. The area of the villus cells tended to be higher in the ZEM groups in all intestinal regions and showed a significant increase (P 〈 0.05) in the ileal part of the 0.2% ZEM group. Also, the assessment of cells mitosis in the intestinal crypts showed significantly higher numbers (P 〈 0.05) in all levels of ZEM groups in the duodenum and a tendency to increase in value in the jejunum and ileum, as compared with the control group. More protuberated cells and multi-cell clusters were found in the ZEM groups than in the control group, resulting in a rough cellular surface. In conclusion, the present study might suggest that the intestinal villi and epithelial cells on the villus apical surface are hypertrophied in the ZEM groups, and that intestinal villi adapt to enhance their absorption capacity by increasing the absorptive surface area. These results are indicated that ZEM can provide effective nutritive value when used as a feed additive.