Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter(DPF). Effect o...Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter(DPF). Effect on the composite regeneration time from various factors such as mass flow rate of exhaust gas, temperature of exhaust gas, oxygen concentration of exhaust gas, microwave power and amount of cerium-based additive are investigated. And a mathematical model based on fuzzy least squares support vector machines has been developed to forecast the endpoint of the composite regeneration. The results show that the relative error of endpoint forecasting model of composite regeneration is less than 3.5%, and the oxygen concentration of exhaust gas has the biggest effect on the endpoint of composite regeneration, followed by the mass flow rate of exhaust gas, the microwave power, the temperature of exhaust gas and the amount of cerium-based additive.展开更多
The efficiencies of 6 kinds of macromolecules with dendritic structure in improving the flow properties of crude oil were investigated. The dendritic additives were synthesized using low-generation dendritic poly(amid...The efficiencies of 6 kinds of macromolecules with dendritic structure in improving the flow properties of crude oil were investigated. The dendritic additives were synthesized using low-generation dendritic poly(amidoamine) and alkyl longchain acrylic esters as starting materials, and their structures were characterized by the Fourier transform infrared spectroscopy, 1H-nuclear magnetic resonance and elemental analysis. The effects on the pour point and rheological properties of crude oil samples were studied. Efficiencies of dendritic long-chain esters were not only influenced by the alky chain length, but also by the generation of dendrimer. The longer the alkyl chain of dendritic long-chain ester was, the better the effect in the reduction of pour point and apparent viscosity was. Efficiencies of 1.5 generation dendritic long-chain ester with 8 branched chains for the reduction of pour point and apparent viscosity were superior to those of 0.5 generation dendritic long-chain ester with 4 branched chains. Under the same conditions, efficiencies of 1.5 generation dendritic eighteen ester were superior to those of other 1.5 generation dendritic long-chain esters for the reduction of pour point and viscosity of crude oil.展开更多
基金Projects(51176045,51276056)supported by the National Natural Science Foundation of ChinaProject(201208430262)supported by the National Studying Abroad Foundation Project of China
文摘Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter(DPF). Effect on the composite regeneration time from various factors such as mass flow rate of exhaust gas, temperature of exhaust gas, oxygen concentration of exhaust gas, microwave power and amount of cerium-based additive are investigated. And a mathematical model based on fuzzy least squares support vector machines has been developed to forecast the endpoint of the composite regeneration. The results show that the relative error of endpoint forecasting model of composite regeneration is less than 3.5%, and the oxygen concentration of exhaust gas has the biggest effect on the endpoint of composite regeneration, followed by the mass flow rate of exhaust gas, the microwave power, the temperature of exhaust gas and the amount of cerium-based additive.
基金supported financially by the Heilongjiang Postdoctorial Financial Foundation of China (Project NO. LBH-Zo8290)The Daqing Oil Field of China was thanked for providing the financial support and the crude oil
文摘The efficiencies of 6 kinds of macromolecules with dendritic structure in improving the flow properties of crude oil were investigated. The dendritic additives were synthesized using low-generation dendritic poly(amidoamine) and alkyl longchain acrylic esters as starting materials, and their structures were characterized by the Fourier transform infrared spectroscopy, 1H-nuclear magnetic resonance and elemental analysis. The effects on the pour point and rheological properties of crude oil samples were studied. Efficiencies of dendritic long-chain esters were not only influenced by the alky chain length, but also by the generation of dendrimer. The longer the alkyl chain of dendritic long-chain ester was, the better the effect in the reduction of pour point and apparent viscosity was. Efficiencies of 1.5 generation dendritic long-chain ester with 8 branched chains for the reduction of pour point and apparent viscosity were superior to those of 0.5 generation dendritic long-chain ester with 4 branched chains. Under the same conditions, efficiencies of 1.5 generation dendritic eighteen ester were superior to those of other 1.5 generation dendritic long-chain esters for the reduction of pour point and viscosity of crude oil.