Control of clarifier in the activated sludge process is critical for ensuring effective wastewater treatment. This paper is to study appropriate control strategies for a clarifier in an industrial wastewater treatment...Control of clarifier in the activated sludge process is critical for ensuring effective wastewater treatment. This paper is to study appropriate control strategies for a clarifier in an industrial wastewater treatment plant. Five control strategies are proposed, implemented and evaluated in a simulation software (West ++). The sludge blanket height and the effluent suspended solids concentration were proposed as the measured variable. The manipulated variable was the quantity of polymer added to the system. The strategies were evaluated in terms of their ability to maintain the sludge blanket height below 1.5m, their polymer requirements, their sensitivity to poor tuning and the required control action.展开更多
The removal of phosphate from municipal sewage by high gradient magnetic separation using aluminium sulphate as precipitating agent and Fe3O4 as seeding material was studied. The effects of aluminium sulphate, Fe3O4, ...The removal of phosphate from municipal sewage by high gradient magnetic separation using aluminium sulphate as precipitating agent and Fe3O4 as seeding material was studied. The effects of aluminium sulphate, Fe3O4, magnetic field intensity, pH value and flow-rate of sewage on phosphorus removal rate were investigated. The results show that addition of 200 mg/L Al2(SO4)3·18H2O and 300 mg/L Fe3O4, magnetic field intensity of 200 kA/m, pH value of 4.57.0 and flow-rate of 6.15 cm/s are both efficient and economic technical parameters for removal of phosphate. The pH value has a tremendous effect on the removal of phosphate. In the pH range of (4.5)7.0, more than 95% phosphate can be removed. Theoretical analysis indicates that the solubility of AlPO4 is minimum at pH 4.07.0 and the electrostatic attractive force between AlPO4 and Fe3O4 is maximum at pH 4.5(6.5.)展开更多
The fuzzy mathematic model was used to evaluate the water quality of six sections in the upper reaches of the Qingshui River Basin. The results showed that tiie water of grade I accounted for a high proportion, with m...The fuzzy mathematic model was used to evaluate the water quality of six sections in the upper reaches of the Qingshui River Basin. The results showed that tiie water of grade I accounted for a high proportion, with mild pollution and strong self-deaning ability; the pollutants (f.g. ammonium nitrogen, total phosphorus and fluoride) at each section mainly came from phosphate mines and phosphorus chemical companies; and the water quaEty among different sections was in the order Chayuan, Xingren Bridge, Xiasi, Locomotive Section, Yingpan, Panghai (from superiority to inferiority). This study has important reference values fof improving the water envifonment, saf^uarding the safely of drinkiiig water supply and scientifically preventing and conttolling water pollution, in the basin.展开更多
The study aims to evaluate the potential of GHG (greenhouse gas) reductions by installing an anaerobic digester in a wastewater treatment facility in Southeast Asia. Then the break-even point of additional investmen...The study aims to evaluate the potential of GHG (greenhouse gas) reductions by installing an anaerobic digester in a wastewater treatment facility in Southeast Asia. Then the break-even point of additional investment to reduce GHG is obtained by exchanging carbon price as emissions credits. In the project scenario, the wastewater treatment system has the digester, where methane (biogas) is produced and recovered. Compared with the baseline scenario, the biogas has calorific value to produce heat and electricity, and can substitute fossil fuels for power generation. The objective of the study is to define the relationship between CERs (certified emission reductions) and investment costs, and the beak-even point, finding out the dominant pa- rameters in the system. Financial parameters such as capital costs and operating costs are considered to evaluate the investmerit costs. The result shows that the methane recovery reduces 54% of GHG emissions. Although the substitution of the biogas for the fossil fuels reduces only 6% of the GHG emissions, the electricity output can satisfy the electricity consumption. The results also show that the maximum CER credit is 73000 t-COEe/a, and the GHG reduction cost is 14 USD/t-CO2e.展开更多
文摘Control of clarifier in the activated sludge process is critical for ensuring effective wastewater treatment. This paper is to study appropriate control strategies for a clarifier in an industrial wastewater treatment plant. Five control strategies are proposed, implemented and evaluated in a simulation software (West ++). The sludge blanket height and the effluent suspended solids concentration were proposed as the measured variable. The manipulated variable was the quantity of polymer added to the system. The strategies were evaluated in terms of their ability to maintain the sludge blanket height below 1.5m, their polymer requirements, their sensitivity to poor tuning and the required control action.
文摘The removal of phosphate from municipal sewage by high gradient magnetic separation using aluminium sulphate as precipitating agent and Fe3O4 as seeding material was studied. The effects of aluminium sulphate, Fe3O4, magnetic field intensity, pH value and flow-rate of sewage on phosphorus removal rate were investigated. The results show that addition of 200 mg/L Al2(SO4)3·18H2O and 300 mg/L Fe3O4, magnetic field intensity of 200 kA/m, pH value of 4.57.0 and flow-rate of 6.15 cm/s are both efficient and economic technical parameters for removal of phosphate. The pH value has a tremendous effect on the removal of phosphate. In the pH range of (4.5)7.0, more than 95% phosphate can be removed. Theoretical analysis indicates that the solubility of AlPO4 is minimum at pH 4.07.0 and the electrostatic attractive force between AlPO4 and Fe3O4 is maximum at pH 4.5(6.5.)
基金Sponsored by Scientific and Technological Cooperation Project of Guizhou Province(LH20157758)Youth Science and Technology Talent Growth Project of Education Department of Guizhou Province(KY[2017]336)
文摘The fuzzy mathematic model was used to evaluate the water quality of six sections in the upper reaches of the Qingshui River Basin. The results showed that tiie water of grade I accounted for a high proportion, with mild pollution and strong self-deaning ability; the pollutants (f.g. ammonium nitrogen, total phosphorus and fluoride) at each section mainly came from phosphate mines and phosphorus chemical companies; and the water quaEty among different sections was in the order Chayuan, Xingren Bridge, Xiasi, Locomotive Section, Yingpan, Panghai (from superiority to inferiority). This study has important reference values fof improving the water envifonment, saf^uarding the safely of drinkiiig water supply and scientifically preventing and conttolling water pollution, in the basin.
文摘The study aims to evaluate the potential of GHG (greenhouse gas) reductions by installing an anaerobic digester in a wastewater treatment facility in Southeast Asia. Then the break-even point of additional investment to reduce GHG is obtained by exchanging carbon price as emissions credits. In the project scenario, the wastewater treatment system has the digester, where methane (biogas) is produced and recovered. Compared with the baseline scenario, the biogas has calorific value to produce heat and electricity, and can substitute fossil fuels for power generation. The objective of the study is to define the relationship between CERs (certified emission reductions) and investment costs, and the beak-even point, finding out the dominant pa- rameters in the system. Financial parameters such as capital costs and operating costs are considered to evaluate the investmerit costs. The result shows that the methane recovery reduces 54% of GHG emissions. Although the substitution of the biogas for the fossil fuels reduces only 6% of the GHG emissions, the electricity output can satisfy the electricity consumption. The results also show that the maximum CER credit is 73000 t-COEe/a, and the GHG reduction cost is 14 USD/t-CO2e.