期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
清粉机正确使用初探 被引量:11
1
作者 龚锡范 王建军 《粮食加工》 2008年第5期47-48,共2页
对清粉机的工作原理深入理解,准确调节物料进入清粉机的粒度、灰分、悬浮速度。将筛下物料、筛上物料、吸出物料分别送入各系统处理,从而得到满意的清粉率及灰分下降率。
关键词 清粉 清粉率 筛面斜度 物料抛掷角度
下载PDF
Effect of a starch-based filter aid on the dewatering of fine clean coal 被引量:6
2
作者 GONG Guanqun XIE Guangyuan +4 位作者 ZHANG Yingjie WANG Ziliang WANG Jin XIE Linghui LUO Zhenfu 《Mining Science and Technology》 EI CAS 2010年第4期635-640,共6页
The dewatering of fine, flotation cleaned coals from Huaibei and Xuzhou (bituminous) and Yongcheng (anthracite) were studied. The supernatant and filter cake were examined to determine the rate and extent of flocculat... The dewatering of fine, flotation cleaned coals from Huaibei and Xuzhou (bituminous) and Yongcheng (anthracite) were studied. The supernatant and filter cake were examined to determine the rate and extent of flocculation and dewatering. A starch-based filter aid was used to increase flocculation and dewatering rates. The filtration constant, K, and compression index, s, of the Yongcheng slurry were measured under various conditions. A designed experiment was performed to determine optimum conditions for dewatering. The results showed that the filter aid enhanced flocculation and coagulation of the fine cleaned coal slurry, enhanced the structure of the filter cake and promoted dewatering of the cake. Moisture content in the cake was reduced to 17% after vacuum filtration. 展开更多
关键词 fine clean coal DEWATERING SETTLEMENT filter aid
下载PDF
Role of bone marrow-derived mesenchymal stem cells in a rat model of severe acute pancreatitis 被引量:13
3
作者 Xiao-Huang Tu Jing-Xiang Song +5 位作者 Xiao-Jun Xue Xian-Wei Guo Yun-Xia Ma Zhi-Yao Chen Zhong-Dong Zou Lie Wang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2012年第18期2270-2279,共10页
AIM:To investigate the role and potential mechanisms of bone marrow mesenchymal stem cells(MSCs) in severe acute peritonitis(SAP).METHODS:Pancreatic acinar cells from Sprague Dawley rats were randomly divided into thr... AIM:To investigate the role and potential mechanisms of bone marrow mesenchymal stem cells(MSCs) in severe acute peritonitis(SAP).METHODS:Pancreatic acinar cells from Sprague Dawley rats were randomly divided into three groups:nonsodium deoxycholate(SDOC) group(non-SODC group),SDOC group,and a MSCs intervention group(i.e.,a co-culture system of MSCs and pancreatic acinar cells + SDOC).The cell survival rate,the concentration of malonaldehyde(MDA),the density of superoxide dismutase(SOD),serum amylase(AMS) secretion rate and lactate dehydrogenase(LDH) leakage rate were detected at various time points.In a separate study,Sprague Dawley rats were randomly divided into either an SAP group or an SAP + MSCs group.Serum AMS,MDA and SOD,interleukin(IL)-6,IL-10,and tumor necrosis factor(TNF)-α levels,intestinal mucosa injury scores and proliferating cells of small intestinal mucosa were measured at various time points after injecting either MSCs or saline into rats.In both studies,the protective effect of MSCs was evaluated.RESULTS:In vitro,The cell survival rate of pancreatic acinar cells and the density of SOD were significantly reduced,and the concentration of MDA,AMS secretion rate and LDH leakage rate were significantly increased in the SDOC group compared with the MSCs intervention group and the Non-SDOC group at each time point.In vivo,Serum AMS,IL-6,TNF-α and MAD level in the SAP + MSCs group were lower than the SAP group;however serum IL-10 level was higher than the SAP group.Serum SOD level was higher than the SAP group at each time point,whereas a significant betweengroup difference in SOD level was only noted after 24 h.Intestinal mucosa injury scores was significantly reduced and the proliferating cells of small intestinal mucosa became obvious after injecting MSCs.CONCLUSION:MSCs can effectively relieve injury to pancreatic acinar cells and small intestinal epithelium,promote the proliferation of enteric epithelium and repair of the mucosa,attenuate systemic inflammation in rats with SAP. 展开更多
关键词 Bone marrow mesenchymal stem cells Severe acute pancreatitis Intestinal barricade function Pancreatic acinar cells
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部