Rapid development of biosynthesis of metal nanoparticles using plants has attracted extensive interests to further investigate this novel and eco-friendly method. In the biosynthesis process, the plant may act as redu...Rapid development of biosynthesis of metal nanoparticles using plants has attracted extensive interests to further investigate this novel and eco-friendly method. In the biosynthesis process, the plant may act as reducing agent, capping agent or shape directing agent. However, identifying specific roles of various components in the plant is challenging. In this study, we use biosynthesis of silver nanoparticles with Gardenia jasminoides Ellis extract to address this issue. The formation process of silver nanoparticles is investigated and the nanoparticles are characterized with the ultraviolet-visible spectroscopy, Fourier transform infrared spectra and scanning electron microscopy. The results indicate that the Gardenia jasminoides Ellis extract can reduce silver ions to form silver nanoparticles, stabilize the nanoparticles, and affect the growth of silver nanocrystal to form silver nanowires. Only geniposide in the extract exhibits good shape-directing ability for silver nanowires. It is found that bovine albumin is a potential capping agent, whereas rutin, gallic acid and chlorogenic acid possess reducing and capping ability.展开更多
基金Supported by the National Natural Science Foundation of China(21036004,21206140)Science and Technology Program of Xiamen of Fujian Province,China(3502Z20133006)
文摘Rapid development of biosynthesis of metal nanoparticles using plants has attracted extensive interests to further investigate this novel and eco-friendly method. In the biosynthesis process, the plant may act as reducing agent, capping agent or shape directing agent. However, identifying specific roles of various components in the plant is challenging. In this study, we use biosynthesis of silver nanoparticles with Gardenia jasminoides Ellis extract to address this issue. The formation process of silver nanoparticles is investigated and the nanoparticles are characterized with the ultraviolet-visible spectroscopy, Fourier transform infrared spectra and scanning electron microscopy. The results indicate that the Gardenia jasminoides Ellis extract can reduce silver ions to form silver nanoparticles, stabilize the nanoparticles, and affect the growth of silver nanocrystal to form silver nanowires. Only geniposide in the extract exhibits good shape-directing ability for silver nanowires. It is found that bovine albumin is a potential capping agent, whereas rutin, gallic acid and chlorogenic acid possess reducing and capping ability.