期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
渐变序高频汉字调整方案
1
作者 李丹宁 李丹 《贵州科学》 1990年第2期55-59,共5页
本文分析了不同情况下汉字使用频率的分布,探讨了几种典型的高频汉字调整方案。根据人们在输入汉字时要求屏幕提示行相对稳定的心理特点,提出了渐变序高频汉字调整方案。结合语境跟踪的思想,通过对键盘输入过程的记忆和化简,实现了一个... 本文分析了不同情况下汉字使用频率的分布,探讨了几种典型的高频汉字调整方案。根据人们在输入汉字时要求屏幕提示行相对稳定的心理特点,提出了渐变序高频汉字调整方案。结合语境跟踪的思想,通过对键盘输入过程的记忆和化简,实现了一个简便高效且具有一定语境跟踪能力的汉字输入系统。 展开更多
关键词 汉字输入 汉字高频调整 渐变序
下载PDF
Asymptotic Results for Tail Probabilities of Sums of Dependent and Heavy-Tailed Random Variables 被引量:2
2
作者 Kam Chuen YUEN Chuancun YIN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第4期557-568,共12页
Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {X... Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {Xk, k 〉 1}. In this framework, the asymptotic behavior of the tail probabilities of the quantities Sn = fi Xk and S(n) =∑ k=1 n 〉 1, and their randomized versions ST and S(τ) are studied. Some risk theory are presented. max Sk for 1〈k〈n applications to the 展开更多
关键词 Asymptotic tail probability COPULA Heavy-tailed distribution Partialsum Risk process
原文传递
THE LIMIT THEOREM FOR DEPENDENT RANDOM VARIABLES WITH APPLICATIONS TO AUTOREGRESSION MODELS
3
作者 Yong ZHANG Xiaoyun YANG Zhishan DONG Dehui WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第3期565-579,共15页
This paper studies the autoregression models of order one, in a general time series setting that allows for weakly dependent innovations. Let {Xt} be a linear process defined by Xt =∑k=0^∞ψ kεt-k, where {ψk, k ≥... This paper studies the autoregression models of order one, in a general time series setting that allows for weakly dependent innovations. Let {Xt} be a linear process defined by Xt =∑k=0^∞ψ kεt-k, where {ψk, k ≥ 0} is a sequence of real numbers and {εk, k = 0, ±1, ±2,...} is a sequence of random variables. Two results are proved in this paper. In the first result, assuming that {εk, k ≥ 1} is a sequence of asymptotically linear negative quadrant dependent (ALNQD) random variables, the authors find the limiting distributions of the least squares estimator and the associated regression t statistic. It is interesting that the limiting distributions are similar to the one found in earlier work under the assumption of i.i.d, innovations. In the second result the authors prove that the least squares estimator is not a strong consistency estimator of the autoregressive parameter a when {εk, k ≥ 1} is a sequence of negatively associated (NA) random variables, and ψ0 = 1, ψk = 0, k ≥ 1. 展开更多
关键词 ALNQD autoregression models least squares estimator negatively associated unit root test.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部