期刊文献+
共找到196篇文章
< 1 2 10 >
每页显示 20 50 100
多频码相结合渐消因子扩展卡尔曼滤波实时定位方法 被引量:1
1
作者 陈明剑 周凤歧 李海峰 《火力与指挥控制》 CSCD 北大核心 2010年第5期117-120,共4页
基于卫星导航定位系统多频载波相位线性组合,采用较长波长的组合波观测值与码观测值,能够较快并准确地获得模糊度,在此基础上,尝试综合利用最小二乘以及渐消因子扩展Kalman滤波技术进行实时单点定位,通过应用分析,获到较好的导航定位结... 基于卫星导航定位系统多频载波相位线性组合,采用较长波长的组合波观测值与码观测值,能够较快并准确地获得模糊度,在此基础上,尝试综合利用最小二乘以及渐消因子扩展Kalman滤波技术进行实时单点定位,通过应用分析,获到较好的导航定位结果,具有一定工程应用价值。 展开更多
关键词 整周模糊度 多频载波相位线性组合 渐消因子扩展卡尔曼滤波 实时定位
下载PDF
基于自适应渐消扩展卡尔曼滤波的锂离子电池SOC估计 被引量:5
2
作者 赵中华 晏晓锋 童有为 《广西师范大学学报(自然科学版)》 CAS 北大核心 2023年第1期58-66,共9页
电池荷电状态(SOC)的准确估计对于电动汽车动力电池的管理至关重要,而电动汽车在实际运行时经常会遇到SOC数据突变的问题,同时所建立的电池模型和噪声模型也存在一定误差,这导致传统扩展卡尔曼滤波算法在SOC估算过程中自适应性和鲁棒性... 电池荷电状态(SOC)的准确估计对于电动汽车动力电池的管理至关重要,而电动汽车在实际运行时经常会遇到SOC数据突变的问题,同时所建立的电池模型和噪声模型也存在一定误差,这导致传统扩展卡尔曼滤波算法在SOC估算过程中自适应性和鲁棒性较差。针对这些问题,本文提出使用自适应渐消扩展卡尔曼滤波算法(AFEKF),应用于锂离子电池的SOC估计。引入渐消因子对系统噪声协方差进行自适应迭代,从而实时更新最优卡尔曼增益,减少数据突变和电池模型误差等因素带来的影响,通过在复杂工况下的实验对比可知,AFEKF相比于标准EKF(extended Kalman filter),新欧洲驾驶循环工况下SOC估算精度提高0.78个百分点,变电流工况下估算精度提高0.5个百分点,同时在电池SOC初始值不准确的情况下能更快更平稳地收敛到真实值,表明AFEKF算法相比EKF估算SOC具有更高的估算精度和更好的鲁棒性。 展开更多
关键词 荷电状态(SOC) 参数辨识 自适应扩展卡尔曼滤波器(AFEKF) 锂离子电池 二阶RC模型
下载PDF
扩展卡尔曼滤波的改进蛇定位算法在WSN中的应用
3
作者 彭铎 刘明硕 谢堃 《无线电工程》 2024年第6期1489-1496,共8页
针对接收信号强度指示(Received Signal Strength Index,RSSI)定位易受到环境因素的影响,提出了一种基于RSSI扩展卡尔曼滤波的改进蛇定位算法(RSSI Extended Kalman Filter-based Improved Snake Optimization Localization Algorithm,R... 针对接收信号强度指示(Received Signal Strength Index,RSSI)定位易受到环境因素的影响,提出了一种基于RSSI扩展卡尔曼滤波的改进蛇定位算法(RSSI Extended Kalman Filter-based Improved Snake Optimization Localization Algorithm,RSSI-EISL)。该算法利用扩展卡尔曼滤波(Extended Kalman Filter,EKF)模型对RSSI信号值进行平滑处理,使其能够抑制噪声和异常值对估计结果的影响,从而提高测距的准确性和鲁棒性。通过引入Levy飞行和非线性收敛因子的改进蛇优化算法(Improved Snake Optimization Algorithm,ISO),提升了蛇优化算法(Snake Optimization Algorithm,SO)的寻优能力,使之能够更加准确地计算出待测节点的坐标。根据仿真结果显示,相较于基于RSSI最小二乘定位算法(RSSI Ordinary Least Squares Localization Algorithm,ROL)、基于RSSI EKF的灰狼定位算法(RSSI Extended Kalman Filter-based Grey Wolf Optimization Algorithm,REGL)和基于RSSI EKF的蛇定位算法(RSSI EKF-based Snake Optimization Localization Algorithm,RESL),RSSI-EISL的定位精度分别提高了26.4%、8.75%和5.6%,算法的收敛速度和全局搜索能力也有所提升。 展开更多
关键词 无线传感器网络 接收信号强度 蛇优化算法 扩展卡尔曼滤波 Levy飞行 非线性收敛因子
下载PDF
非线性系统带次优渐消因子的扩展卡尔曼滤波 被引量:138
4
作者 周东华 席裕庚 张钟俊 《控制与决策》 EI CSCD 北大核心 1990年第5期1-6,共6页
本文提出一种适用于一般非线性系统的带次优渐消因子的扩展卡尔曼滤波器。文中给出了求次优时变渐消因子的两种算法,并以数值仿真实例说明本文方法的有效性。
关键词 非线性系统 尔曼滤波 因子
下载PDF
改进的自适应扩展卡尔曼滤波雷达目标跟踪算法
5
作者 杨遵立 张衡 +2 位作者 吕伟 余娟 张从胜 《火力与指挥控制》 CSCD 北大核心 2024年第3期19-24,共6页
卡尔曼滤波是雷达目标跟踪场景最常用的目标状态跟踪估计算法,但针对非线性运动模型和噪声模型适配失配后,其滤波算法跟踪精度会出现下降。针对这些问题,提出一种机动目标场景下改进自适应扩展卡尔曼滤波的雷达目标跟踪算法,通过目标位... 卡尔曼滤波是雷达目标跟踪场景最常用的目标状态跟踪估计算法,但针对非线性运动模型和噪声模型适配失配后,其滤波算法跟踪精度会出现下降。针对这些问题,提出一种机动目标场景下改进自适应扩展卡尔曼滤波的雷达目标跟踪算法,通过目标位置偏差范围来修正预测的位置信息,使用BP神经网络算法来自适应进行扩展卡尔曼滤波(extended kalman filter,EKF)算法预测信息结果的修正;根据噪声影响情况,提出基于实际情况可调的更新因子,用于进行修正后的EKF预测位置信息、测量信息和修正后的BP-EKF预测信息值的权重处理,基于优化模型,自适应选择最优的位置预测信息。仿真分析表明,所提出的算法在目标跟踪的滤波精度和稳定度都得到提升。 展开更多
关键词 机动目标跟踪 扩展卡尔曼滤波 BP神经网络 更新因子 优化模型
下载PDF
自适应渐消无迹卡尔曼滤波锂电池SoC估计
6
作者 郭向伟 李璐颖 +2 位作者 王晨 王亚丰 李万 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期167-175,共9页
精确的荷电状态(SoC)是锂电池安全高效运行的重要保障,文章针对传统无迹卡尔曼滤波(UKF)对非线性系统突变状态跟踪能力差,导致SoC估计精度低的问题,提出一种新型自适应渐消无迹卡尔曼滤波(AFUKF)SoC估计方法。首先,通过设计新型衰减因子... 精确的荷电状态(SoC)是锂电池安全高效运行的重要保障,文章针对传统无迹卡尔曼滤波(UKF)对非线性系统突变状态跟踪能力差,导致SoC估计精度低的问题,提出一种新型自适应渐消无迹卡尔曼滤波(AFUKF)SoC估计方法。首先,通过设计新型衰减因子对UKF误差协方差矩阵进行加权,并基于新型衰减因子完成AFUKF的设计,减小陈旧量测值对估计结果的影响,提高传统UKF的估计精度和跟踪能力。其次,基于自主实验平台测试数据,验证了本文所提AFUKF算法存在初始误差时,相较于传统UKF算法,ECE工况下平均绝对误差和均方根误差分别下降了47.95%和33.92%,DST工况下分别下降了36.40%和27.73%;相较于同类改进的AUKF算法,ECE工况下平均绝对误差和均方根误差分别下降了43.36%和33.51%,DST工况下分别下降了39.01%和25.63%。模型结果表明,相比于传统UKF算法以及同类型改进的AUKF算法,AFUKF具有更高的估计精度,且在相同初始SoC误差条件下具有更好的鲁棒性。 展开更多
关键词 荷电状态 衰减因子 无迹卡尔曼滤波 自适应无迹卡尔曼滤波
下载PDF
新的自适应渐消扩展卡尔曼滤波在GPS定位中的应用 被引量:5
7
作者 胡辉 彭雄明 +1 位作者 杨德进 李阳达 《火力与指挥控制》 CSCD 北大核心 2016年第3期177-182,共6页
当实际数据出现突变时,基于最小二乘、扩展卡尔曼滤波的GPS定位解算存在定位结果精度低和稳定性差的问题。提出一种自适应渐消扩展卡尔曼滤波算法,通过自适应渐消迭代系统噪声协方差,来实现抑制数据突变影响。试验结果表明:该算法相比... 当实际数据出现突变时,基于最小二乘、扩展卡尔曼滤波的GPS定位解算存在定位结果精度低和稳定性差的问题。提出一种自适应渐消扩展卡尔曼滤波算法,通过自适应渐消迭代系统噪声协方差,来实现抑制数据突变影响。试验结果表明:该算法相比最小二乘、扩展卡尔曼滤波,其定位精度有所提高;相比传统渐消扩展卡尔曼滤波,其收敛速度、稳定性有所提高。 展开更多
关键词 GPS 自适应 扩展卡尔曼滤波 定位精度 稳定性
下载PDF
自适应渐消有偏扩展卡尔曼滤波在目标跟踪中的应用 被引量:11
8
作者 严春满 吴松伦 董俊松 《传感技术学报》 CAS CSCD 北大核心 2020年第2期315-320,共6页
针对机动目标跟踪过程观测矩阵病态导致扩展卡尔曼滤波算法跟踪效果不佳的问题,提出一种自适应渐消有偏扩展卡尔曼滤波算法。该算法以扩展卡尔曼滤波为基本框架,并借鉴Gauss-Markov模型的思想以解决观测矩阵病态问题。算法根据状态估计... 针对机动目标跟踪过程观测矩阵病态导致扩展卡尔曼滤波算法跟踪效果不佳的问题,提出一种自适应渐消有偏扩展卡尔曼滤波算法。该算法以扩展卡尔曼滤波为基本框架,并借鉴Gauss-Markov模型的思想以解决观测矩阵病态问题。算法根据状态估计均方误差最小条件求得有偏因子,以降低病态观测矩阵对滤波估计的影响;根据滤波发散判据提出一种新的渐消因子估计方法,以实时调整预测协方差矩阵,从而改善滤波增益并有效提高目标跟踪精度。仿真结果表明,改进算法比传统扩展卡尔曼滤波对目标跟踪的精度有较大提高,同时稳定性更好。 展开更多
关键词 目标跟踪 自适应滤波 扩展卡尔曼滤波 有偏因子 因子
下载PDF
基于自适应渐消Sage-Husa扩展卡尔曼滤波的协同定位算法 被引量:8
9
作者 周萌萌 张冰 +2 位作者 赵强 潘梦婷 左思雨 《中国舰船研究》 CSCD 北大核心 2022年第4期92-97,共6页
[目的]针对多自主水下航行器(AUV)在航行过程中的定位精度等问题,提出一种基于自适应渐消Sage-Husa扩展卡尔曼滤波的多AUV协同定位算法。[方法]首先,改进滤波算法中的自适应滤波器,由渐消记忆指数加权得到新息协方差估计值,并引入渐消... [目的]针对多自主水下航行器(AUV)在航行过程中的定位精度等问题,提出一种基于自适应渐消Sage-Husa扩展卡尔曼滤波的多AUV协同定位算法。[方法]首先,改进滤波算法中的自适应滤波器,由渐消记忆指数加权得到新息协方差估计值,并引入渐消因子修正预测误差协方差,以达到调节滤波增益的目的。然后,建立多AUV协同导航模型,得到基本的协同导航滤波过程,通过对速度、加速度及位置信息的融合,实现对跟随AUV位置状态的准确估计。最后,采用此算法与EM-EKF,EKF算法分别对AUV协同导航模型进行仿真,并对结果进行对比。[结果]结果表明,在噪声协方差不匹配时,所提算法与EM-EKF,EKF算法相比均方根误差(RMSE)分别减少17.82%和24.48%,平均定位误差分别减少17.87%和22.54%;在噪声协方差时变时,RMSE分别减少42.11%和51.23%,平均定位误差分别减少34.87%和46.90%。[结论]所提算法有效改善了滤波的可靠性、精确性和自适应性。 展开更多
关键词 自主水下航行器 协同定位 定位精度 Sage-Husa自适应滤波 因子
下载PDF
基于二阶近似扩展卡尔曼滤波的锂离子电池SOC估计 被引量:7
10
作者 段林超 张旭刚 +2 位作者 张华 宋华伟 敖秀奕 《中国机械工程》 EI CAS CSCD 北大核心 2023年第15期1797-1804,共8页
为提高电池荷电状态(SOC)估计的准确性,更高阶的扩展卡尔曼滤波(EKF)算法被用来估计SOC值。首先建立锂离子电池一阶Thevenin等效电路模型,采用样条函数来表述开路电压(OCV)和SOC值的函数关系。为更加精确地识别等效电路模型参数,提出一... 为提高电池荷电状态(SOC)估计的准确性,更高阶的扩展卡尔曼滤波(EKF)算法被用来估计SOC值。首先建立锂离子电池一阶Thevenin等效电路模型,采用样条函数来表述开路电压(OCV)和SOC值的函数关系。为更加精确地识别等效电路模型参数,提出一种新的带有可变遗忘因子最小二乘法(VFFRLS)的算法来在线识别模型参数。由于VFFRLS解的精度依赖于算法初始值的设定,为此采用改进粒子群算法求得模型初始参数值,进而得到更加精确的VFFRLS初始值。最后采用二阶EKF来估计电池的SOC值,以此提高估计精度。两组不同的数据集用来证明二阶EKF估计SOC值具有普适性。实验结果表明,二阶EKF在估计不同工况条件下的SOC值时,平均绝对误差(MAE)都保持在1%以内,由此证明了所提方法的有效性。 展开更多
关键词 电池荷电状态 二阶扩展卡尔曼滤波 可变遗忘因子最小二乘法 改进粒子群算法 参数识别
下载PDF
自适应卡尔曼滤波器渐消因子选取方法研究 被引量:68
11
作者 徐景硕 秦永元 彭蓉 《系统工程与电子技术》 EI CSCD 北大核心 2004年第11期1552-1554,共3页
分析了通过改变噪声和初始条件抑制Kalman滤波发散的方法,指出了造成Kalman滤波发散的原因和控制Kalman滤波发散的机理。推导了衰减记忆滤波方程并研究了衰减记忆滤波噪声阵和滤波初值的选取条件,分析了衰减记忆滤波条件下量测噪声阵遗... 分析了通过改变噪声和初始条件抑制Kalman滤波发散的方法,指出了造成Kalman滤波发散的原因和控制Kalman滤波发散的机理。推导了衰减记忆滤波方程并研究了衰减记忆滤波噪声阵和滤波初值的选取条件,分析了衰减记忆滤波条件下量测噪声阵遗忘因子权重变化的物理意义。给出了衰减记忆滤波不发散的自适应遗忘因子的新算法,仿真结果证明了所述方法的有效性。 展开更多
关键词 KALMAN滤波 滤波发散 因子
下载PDF
带渐消因子的Quadrature卡尔曼滤波 被引量:11
12
作者 刘玉磊 冯新喜 +1 位作者 鹿传国 孔云波 《宇航学报》 EI CAS CSCD 北大核心 2013年第10期1370-1377,共8页
为了解决无源传感器机动目标跟踪系统非线性较强、传统的跟踪滤波方法不稳定容易发散的缺陷,提出了一种带渐消因子的QKF(FQKF)算法。该算法通过引入时变渐消因子来实时调整状态预测误差协方差阵、量测预测误差协方差阵及状态预测误差和... 为了解决无源传感器机动目标跟踪系统非线性较强、传统的跟踪滤波方法不稳定容易发散的缺陷,提出了一种带渐消因子的QKF(FQKF)算法。该算法通过引入时变渐消因子来实时调整状态预测误差协方差阵、量测预测误差协方差阵及状态预测误差和量测预测误差之间的互协方差阵,利用公式推导得出渐消因子实际上是对状态传播积分点和量测传播积分点进行渐消,进而达到实时调整滤波器增益矩阵的目的。并通过算法的机理分析和仿真实验表明FQKF算法具有强跟踪滤波器(STF)的优良性能,能够克服QKF算法的缺陷,对于无源传感器机动目标跟踪中系统的突变状态具有较强的跟踪能力,较QKF算法稳定性有所提高,并且计算量适中。 展开更多
关键词 非线性系统 Quadrature卡尔曼滤波 因子 强跟踪滤波
下载PDF
基于多重渐消因子的自适应卡尔曼滤波器 被引量:29
13
作者 高伟 李敬春 +1 位作者 奔粤阳 杨晓龙 《系统工程与电子技术》 EI CSCD 北大核心 2014年第7期1405-1409,共5页
现有计算渐消因子的自适应卡尔曼滤波器得到的通常是标量渐消因子,从而导致各滤波通道具有相同的调节能力,不利于提高滤波精度。针对该问题,提出了一种利用估计均方误差和新息协方差估计值来计算多重渐消因子的方法,通过一组并行工作的... 现有计算渐消因子的自适应卡尔曼滤波器得到的通常是标量渐消因子,从而导致各滤波通道具有相同的调节能力,不利于提高滤波精度。针对该问题,提出了一种利用估计均方误差和新息协方差估计值来计算多重渐消因子的方法,通过一组并行工作的基于限定记忆指数加权的新息协方差估值器来计算渐消因子,并根据估计均方误差把渐消因子分配给各滤波通道,从而提高自适应卡尔曼滤波器整体性能,仿真结果证明了所提方法的有效性。 展开更多
关键词 尔曼滤波 自适应算法 多重因子 限定记忆指数加权法 新息协方差估值器
下载PDF
多渐消因子卡尔曼滤波及其在SINS初始对准中的应用 被引量:25
14
作者 钱华明 葛磊 彭宇 《中国惯性技术学报》 EI CSCD 北大核心 2012年第3期287-291,共5页
针对卡尔曼滤波在系统模型失配和未知干扰情况下鲁棒性差的特点,对于一类线性模型提出了多渐消因子卡尔曼滤波算法。该算法利用卡尔曼滤波取得最佳增益时残差序列互不相关的性质,可以在线自适应地调整多个渐消因子,从而对多个数据通道... 针对卡尔曼滤波在系统模型失配和未知干扰情况下鲁棒性差的特点,对于一类线性模型提出了多渐消因子卡尔曼滤波算法。该算法利用卡尔曼滤波取得最佳增益时残差序列互不相关的性质,可以在线自适应地调整多个渐消因子,从而对多个数据通道进行渐消,即使当滤波达到稳态时仍然可以调整滤波增益,使得该算法对模型失配和未知干扰有较强的鲁棒性。将该算法用于噪声统计不准确的SINS初始对准,数值仿真表明,当系统模型存在不准确情况时,新方法对航向误差角的估计精度较单渐消因子卡尔曼滤波和常规卡尔曼滤波分别提高了70%和43%,证明了该算法的有效性。 展开更多
关键词 尔曼滤波 因子 因子 噪声统计不准确 鲁棒性
下载PDF
一种基于指数渐消因子的自适应卡尔曼滤波算法 被引量:16
15
作者 孙章国 钱峰 《电子测量技术》 2010年第1期40-42,共3页
本文应用自适应估计理论,提出了一种指数渐消因子自适应算法。该算法通过实测残差与理论残差的比值来确定指数方程的系数,调节自适应渐消因子,保证了滤波的稳定性,提高了滤波精度,并且冲破了经验储备系数的限制。最后对比其他三种自适... 本文应用自适应估计理论,提出了一种指数渐消因子自适应算法。该算法通过实测残差与理论残差的比值来确定指数方程的系数,调节自适应渐消因子,保证了滤波的稳定性,提高了滤波精度,并且冲破了经验储备系数的限制。最后对比其他三种自适应滤波算法进行了仿真比较,仿真结果表明,指数渐消因子自适应滤波算法是一种实用而有效的算法。 展开更多
关键词 尔曼滤波 自适应卡尔曼滤波 指数因子 储备系数
下载PDF
基于扩展卡尔曼滤波的非视距误差消除算法 被引量:2
16
作者 雷延锋 王玫 肖宁 《电视技术》 北大核心 2013年第9期164-167,共4页
在蜂窝网无线定位中,到达时间(TOA)或到达时间差(TDOA)中的非视距(NLOS)误差会导致移动台的位置估计出现较大偏差。为了减轻NLOS误差的影响,提出了一种基于扩展卡尔曼滤波(EKF)的非视距误差消除算法。算法通过引入一个NLOS转换因子改进... 在蜂窝网无线定位中,到达时间(TOA)或到达时间差(TDOA)中的非视距(NLOS)误差会导致移动台的位置估计出现较大偏差。为了减轻NLOS误差的影响,提出了一种基于扩展卡尔曼滤波(EKF)的非视距误差消除算法。算法通过引入一个NLOS转换因子改进EKF的迭代过程,消除NLOS误差对定位估计的影响。计算机仿真结果表明,在NLOS环境下定位精度的提高是显著的。 展开更多
关键词 蜂窝无线定位 扩展卡尔曼滤波 非视距误差 NLOS转换因子
下载PDF
基于自适应扩展卡尔曼滤波的消能减震结构及附加阻尼力识别 被引量:1
17
作者 谢丽宇 李宪之 +1 位作者 张睿 薛松涛 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第11期66-73,共8页
针对消能减震结构中阻尼器提供的阻尼力难以直接测量,对其性能及状态进行评估较为困难的问题,提出了一种基于自适应扩展卡尔曼滤波的结构参数及未知激励识别方法,并将其应用于消能减震结构的阻尼器特性识别.当阻尼器结构模型已知时,该... 针对消能减震结构中阻尼器提供的阻尼力难以直接测量,对其性能及状态进行评估较为困难的问题,提出了一种基于自适应扩展卡尔曼滤波的结构参数及未知激励识别方法,并将其应用于消能减震结构的阻尼器特性识别.当阻尼器结构模型已知时,该方法可对阻尼器参数进行识别;当阻尼器结构模型未知时,阻尼器对结构提供的附加阻尼力可视为结构所受附加未知激励,同样也可由该方法进行识别.采用一个多层剪切框架结构和一个多层加装阻尼器的消能减震结构作为数值算例,并采用一个单层加装阻尼器的剪切框架结构作为试验算例,验证了所提出的方法的有效性和可行性.所提出方法可为消能减震结构中阻尼器的特性识别及性能评估提供更多的依据. 展开更多
关键词 能减震结构 附加阻尼力 扩展卡尔曼滤波 自适应
下载PDF
基于可变遗忘因子的渐消记忆变分贝叶斯自适应滤波算法
18
作者 靳凯迪 柴洪洲 +2 位作者 宿楚涵 惠俊 白腾飞 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第11期2989-2999,共11页
针对全球卫星导航系统/捷联惯性导航系统(GNSS/SINS)组合导航中GNSS信号易受干扰,造成量测噪声突变的问题,提出一种基于可变遗忘因子的渐消记忆变分贝叶斯自适应Kalman滤波(VBAKF)算法。针对自适应滤波中突变噪声难以准确探测,构建基于... 针对全球卫星导航系统/捷联惯性导航系统(GNSS/SINS)组合导航中GNSS信号易受干扰,造成量测噪声突变的问题,提出一种基于可变遗忘因子的渐消记忆变分贝叶斯自适应Kalman滤波(VBAKF)算法。针对自适应滤波中突变噪声难以准确探测,构建基于初值的噪声突变检验准则;为解决自适应滤波估计突变噪声的拖尾现象,将变分贝叶斯自适应滤波的超参数传递结构转化为协方差阵修正结构,通过构造可变遗忘因子函数动态调节自适应滤波中的遗忘因子。仿真和实测数据表明:所提算法可在GNSS/SINS噪声突变时快速估计量测噪声,提高组合导航精度。 展开更多
关键词 变分贝叶斯 自适应滤波 遗忘因子 记忆 组合导航
下载PDF
基于自适应多重渐消因子卡尔曼滤波的SINS初始对准方法 被引量:28
19
作者 薛海建 郭晓松 周召发 《系统工程与电子技术》 EI CSCD 北大核心 2017年第3期620-626,共7页
针对传统卡尔曼滤波器在模型失配和噪声时变情况下滤波精度下降甚至发散的问题,设计了一种新的多重渐消因子卡尔曼滤波算法。该算法通过一个基于渐消记忆指数加权的新息协方差估计器来计算新息协方差估计值,并依此引入多重渐消因子对预... 针对传统卡尔曼滤波器在模型失配和噪声时变情况下滤波精度下降甚至发散的问题,设计了一种新的多重渐消因子卡尔曼滤波算法。该算法通过一个基于渐消记忆指数加权的新息协方差估计器来计算新息协方差估计值,并依此引入多重渐消因子对预测误差协方差阵进行调整,使得各滤波通道具有不同的调节能力,克服了单渐消因子对多变量跟踪能力差的局限性,从而提高滤波算法的精度和鲁棒性。仿真和试验结果表明,新算法能有效抑制滤波器发散,其滤波精度和鲁棒性优于常规卡尔曼滤波与单渐消因子卡尔曼滤波,能够更好地满足工程应用的要求。 展开更多
关键词 捷联惯性导航系统 初始对准 尔曼滤波 多重因子 记忆指数加权
下载PDF
多渐消因子平方根容积卡尔曼滤波算法 被引量:3
20
作者 鲍水达 张安 高飞 《计算机测量与控制》 2018年第6期244-247,共4页
针对平方根容积卡尔曼滤波(SCKF)在系统模型不准确和状态突变情况下鲁棒性差的问题,提出了一种多渐消因子平方根容积卡尔曼滤波算法(MSTSCKF);MSTSCKF引入强跟踪思想,通过多渐消因子实时调整增益矩阵,建立多渐消因子数值求解方法,克服... 针对平方根容积卡尔曼滤波(SCKF)在系统模型不准确和状态突变情况下鲁棒性差的问题,提出了一种多渐消因子平方根容积卡尔曼滤波算法(MSTSCKF);MSTSCKF引入强跟踪思想,通过多渐消因子实时调整增益矩阵,建立多渐消因子数值求解方法,克服多渐消因子求解依赖先验知识的不足;采用假设检验理论对系统异常进行检测,降低误判概率,提高滤波稳定性;通过仿真分析,比较了SCKF、单渐消因子平方根容积卡尔曼滤波(STSCKF)和MSTSCKF的算法性能,实验表明MSTSCKF具有更好的跟踪精度和鲁棒性。 展开更多
关键词 平方根容积卡尔曼滤波 强跟踪滤波 因子 假设检验
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部