This paper discussed asymptotic property of Taylor remainder 'mean value point' in normed Linear space. The asymptotic progerty of 'mean value point' is solved when f(n+i)(x0)h(n+i) = 0(i = 1, 2,..., p...This paper discussed asymptotic property of Taylor remainder 'mean value point' in normed Linear space. The asymptotic progerty of 'mean value point' is solved when f(n+i)(x0)h(n+i) = 0(i = 1, 2,..., p - 1) and f(n+p)(x0)h(h+p) don't exist. Meanwhile, achieve more general asymptotic estimation formula. Make many former results are just because of special case of the pager.展开更多
基金Supported by the Natural Seience Foundation of Henan Educational Committee(20031100036)
文摘This paper discussed asymptotic property of Taylor remainder 'mean value point' in normed Linear space. The asymptotic progerty of 'mean value point' is solved when f(n+i)(x0)h(n+i) = 0(i = 1, 2,..., p - 1) and f(n+p)(x0)h(h+p) don't exist. Meanwhile, achieve more general asymptotic estimation formula. Make many former results are just because of special case of the pager.