期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
应力S(t)为复合x^2-更新过程时结构可靠度渐近正态估计 被引量:6
1
作者 林升光 《数学物理学报(A辑)》 CSCD 北大核心 2001年第2期245-251,共7页
该文讨论强度为随机变量X 应力为复合x2-更新过程{Y(t),t ∈[0,T]}时结构可靠度的 渐近正态性问题.获得在设计基准期[0,T] 内结构可靠度表达式和结构可靠度渐近正态估计.
关键词 复合X^2更新过程 结构可靠度 渐近正态估计 强度 随机变量 应力 设计基准期
下载PDF
正态分布N(μ,σ^2)的标准方差的两个渐近正态估计 被引量:2
2
作者 王强 韩叶飞 《淮阴师范学院学报(自然科学版)》 CAS 2005年第4期272-275,共4页
讨论了正态分布标准方差的两个渐近正态估计量及它们之间的优良性的比较,利用相对渐近效准则作为比较的准则.
关键词 渐近正态估计 相对 分布
下载PDF
二参数Weibull分布形状参数β的渐近置信估计
3
作者 刘玉霜 门艳红 《聊城大学学报(自然科学版)》 2006年第3期34-35,44,共3页
通过对Weibull分布作变换,将对Weibull分布形状参数β的研究转化为对极值分布尺度参数σ的研究,利用极值分布的样本均值和样本方差,构造极值分布尺度参数σ的渐近正态估计量,进而得到Weibull分布形状参数β的渐近置信区间估计.
关键词 威布尔分布 极值分布 渐近正态估计 区间估计
下载PDF
广义半参数回归模型中渐近有效的若干结果 被引量:1
4
作者 梁华 高集体 《应用概率统计》 CSCD 北大核心 1996年第2期213-220,共8页
考虑Y=f(X,β_0)+g(T)+ε,f(.,.) 为一定义在R^(b_1)×R^p上的已知函数,g(.)是一未知函数β_0是一p×1待估向量。本文综述了关于β_0估计的渐近正态性,渐近正态意义下有效性,二阶渐近有效性,Bahadur渐近有效性等方面已取得结果。
关键词 广义 有效性 半参数回归模型 渐近正态估计
下载PDF
半参数EV模型参数的二阶段估计 被引量:5
5
作者 李范良 何灿芝 《经济数学》 2002年第1期50-54,共5页
本文综合核函数法 ,最小二乘法 ,利用二阶段估计的方法求出了 EV模型中参数的估计量 ,并研究了它的强相合性以及渐近正态性 .
关键词 半参数模型 参数估计 强相合性
下载PDF
多项Probit模型中回归系数的逆回归估计
6
作者 马建军 徐兴忠 《应用概率统计》 CSCD 北大核心 2008年第5期501-512,共12页
本文将多项Probit模型推广到更一般的形式,研究了推广的多项Probit模型的逆回归性质,给出了回归系数的逆回归估计方法,并证明了在满足一些条件时估计是渐近正态的.模拟表明逆回归估计方法有良好的表现.
关键词 多项Probit模型 逆回归方法 回归系数的估计
下载PDF
艾拉姆咖(ЭРланга)分布参数估计的若干性质
7
作者 彭丽丽 李权权 《佳木斯大学学报(自然科学版)》 CAS 2010年第5期770-771,共2页
讨论了艾拉姆咖(ЭРланга)分布参数的矩估计和极大似然估计的效率及其若干性质.
关键词 艾拉姆咖(ЭРланга)分布 效率 强相合估计 最优估计
下载PDF
GBVE指-数模型结构可靠度估计
8
作者 柯俊斌 李英国 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期25-27,共3页
设二元随机变量(X,Y)的联合生存函数为-F(x,y)=exp{-[(x/θ1)1/δ+(y/θ2)1/δ]δ},0<x,y<∞,0<δ≤1,0<θ1,θ2<∞,把它称作GBVE(θ1,θ2,δ).考虑串联系统两元件的应力服从GBVE(θ1,θ2,δ),强度服从指数分布的应力-... 设二元随机变量(X,Y)的联合生存函数为-F(x,y)=exp{-[(x/θ1)1/δ+(y/θ2)1/δ]δ},0<x,y<∞,0<δ≤1,0<θ1,θ2<∞,把它称作GBVE(θ1,θ2,δ).考虑串联系统两元件的应力服从GBVE(θ1,θ2,δ),强度服从指数分布的应力-强度模型,分别在应力参数和强度参数未知的情况下给出结构可靠度估计. 展开更多
关键词 GBVE 结构可靠度 渐近正态估计 相合估计
原文传递
加权复合分位数回归方法在动态VaR风险度量中的应用 被引量:13
9
作者 刘晓倩 周勇 《中国管理科学》 CSSCI 北大核心 2015年第6期1-8,共8页
风险价值(VaR)因为简单直观,成为了当今国际上最主流的风险度量方法之一,而基于时间序列自回归(AR)模型来计算无条件风险度量值在实业界有广泛应用。本文基于分位数回归理论对AR模型提出了一个估计方法——加权复合分位数回归(WCQR)估计... 风险价值(VaR)因为简单直观,成为了当今国际上最主流的风险度量方法之一,而基于时间序列自回归(AR)模型来计算无条件风险度量值在实业界有广泛应用。本文基于分位数回归理论对AR模型提出了一个估计方法——加权复合分位数回归(WCQR)估计,该方法可以充分利用多个分位数信息提高参数估计的效率,并且对于不同的分位数回归赋予不同的权重,使得估计更加有效,文中给出了该估计的渐近正态性质。有限样本的数值模拟表明,当残差服从非正态分布时,WCQR估计的的统计性质接近于极大似然估计,而该估计是不需要知道残差分布的,因此,所提出的WCQR估计更加具有竞争力。此方法在预测资产收益的VaR动态风险时有较好的应用,我们将所提出的理论分析了我国九只封闭式基金,实证分析发现,结合WCQR方法求得的VaR风险与用非参数方法求得的VaR风险非常接近,而结合WCQR方法可以计算动态的VaR风险值和预测资产收益的VaR风险值。 展开更多
关键词 AR模型 分位数回归 ~WCQR估计 VAR
原文传递
ASYMPTOTIC NORMALITY OF WAVELET ESTIMATOR IN HETEROSCEDASTIC MODEL WITH α-MIXING ERRORS 被引量:3
10
作者 Hanying LIANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第4期725-737,共13页
Consider heteroscedastic regression model Yni= g(xni) + σniεni (1 〈 i 〈 n), where σ2ni= f(uni), the design points (xni, uni) are known and nonrandom, g(.) and f(.) are unknown functions defined on cl... Consider heteroscedastic regression model Yni= g(xni) + σniεni (1 〈 i 〈 n), where σ2ni= f(uni), the design points (xni, uni) are known and nonrandom, g(.) and f(.) are unknown functions defined on closed interval [0, 1], and the random errors (εni, 1 ≤i≤ n) axe assumed to have the same distribution as (ξi, 1 ≤ i ≤ n), which is a stationary and a-mixing time series with Eξi =0. Under appropriate conditions, we study asymptotic normality of wavelet estimators of g(.) and f(.). Finite sample behavior of the estimators is investigated via simulations, too. 展开更多
关键词 Α-MIXING asymptotic normality heteroscedastic regression model wavelet estimator.
原文传递
TWO-STEP ESTIMATORS IN PARTIAL LINEAR MODELS WITH MISSING RESPONSE VARIABLES AND ERROR-PRONE COVARIATES 被引量:1
11
作者 Yiping YANG Liugen XUE Weihu CHENG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第6期1165-1182,共18页
A partial linear model with missing response variables and error-prone covariates is considered. The imputation approach is developed to estimate the regression coefficients and the nonparametric function. The propose... A partial linear model with missing response variables and error-prone covariates is considered. The imputation approach is developed to estimate the regression coefficients and the nonparametric function. The proposed parametric estimators are shown to be asymptotically normal, and the estimators for the nonparametric part are proved to converge at an optimal rate. To construct confidence regions for the regression coefficients and the nonparametric function, respectively, the authors also propose the empirical-likelihood-based statistics and investigate the limit distributions of the empirical likelihood ratios. The simulation study is conducted to compare the finite sample behavior for the proposed estimators. An application to an AIDS dataset is illustrated. 展开更多
关键词 Empirical likelihood imputation approach measurement error partial linear model X2-distribution.
原文传递
CONFIDENCE INTERVALS FOR NONPARAMETRIC REGRESSION FUNCTIONS WITH MISSING DATA: MULTIPLE DESIGN CASE 被引量:2
12
作者 Qingzhu LEI Yongsong QIN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第6期1204-1217,共14页
This paper considers two estimators of θ= g(x) in a nonparametric regression model Y = g(x) + ε(x∈ (0, 1)p) with missing responses: Imputation and inverse probability weighted esti- mators. Asymptotic nor... This paper considers two estimators of θ= g(x) in a nonparametric regression model Y = g(x) + ε(x∈ (0, 1)p) with missing responses: Imputation and inverse probability weighted esti- mators. Asymptotic normality of the two estimators is established, which is used to construct normal approximation based confidence intervals on θ. 展开更多
关键词 Confidence interval missing at random nonparametric regression normal approximation.
原文传递
Semi-parametric estimation for the Box-Cox transformation model with partially linear structure 被引量:1
13
作者 ZHOU GuoLiang ZHOU YaHong 《Science China Mathematics》 SCIE 2013年第3期459-481,共23页
The Box-Cox transformation model has been widely used in applied econometrics, positive accounting, positive finance and statistics. There is a large literature on Box-Cox transformation model with linear structure. H... The Box-Cox transformation model has been widely used in applied econometrics, positive accounting, positive finance and statistics. There is a large literature on Box-Cox transformation model with linear structure. However, there is seldom seen on the discussion for such a model with partially linear structure. Considering the importance of the partially linear model, in this paper, a relatively simple semi-parametric estimation procedure is proposed for the Box-Cox transformation model without presuming the linear functional form and without specifying any parametric form of the disturbance, which largely reduces the risk of model misspecification. We show that the proposed estimator is consistent and asymptotically normally distributed. Its covariance matrix is also in a closed form, which can be easily estimated. Finally, a simulation study is conducted to see the finite sample performance of our estimator. 展开更多
关键词 Box-Cox transformation model semiparametric estimation rank condition smoothed kernel
原文传递
ON ASYMPTOTIC NORMALITY OF PARAMETERS IN MULTIPLE LINEAR ERRORS-IN-VARIABLES MODEL
14
作者 ZHANGSanguo CHENXiru 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2003年第4期438-445,共8页
This paper studies the parameter estimation of multiple dimensional linear errors-in-variables (EV) models in the case where replicated observations are available in some experimental points. Asymptotic normality is e... This paper studies the parameter estimation of multiple dimensional linear errors-in-variables (EV) models in the case where replicated observations are available in some experimental points. Asymptotic normality is established under mild conditions, and the parameters entering the asymptotic variance are consistently estimated to render the result useable in the construction of large-sample confidence regions. 展开更多
关键词 errors-in-variables model asymptotic normality replicated observations
原文传递
Smoothed Estimator of Quantile Residual Lifetime for Right Censored Data
15
作者 ZHANG Li LIU Peng ZHOU Yong 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第6期1374-1388,共15页
It is of great interest to estimate quantile residual lifetime in medical science and many other fields. In survival analysis, Kaplan-Meier(K-M) estimator has been widely used to estimate the survival distribution. ... It is of great interest to estimate quantile residual lifetime in medical science and many other fields. In survival analysis, Kaplan-Meier(K-M) estimator has been widely used to estimate the survival distribution. However, it is well-known that the K-M estimator is not continuous, thus it can not always be used to calculate quantile residual lifetime. In this paper, the authors propose a kernel smoothing method to give an estimator of quantile residual lifetime. By using modern empirical process techniques, the consistency and the asymptotic normality of the proposed estimator are provided neatly.The authors also present the empirical small sample performances of the estimator. Deficiency is introduced to compare the performance of the proposed estimator with the naive unsmoothed estimator of the quantile residaul lifetime. Further simulation studies indicate that the proposed estimator performs very well. 展开更多
关键词 Empirical process estimating equation influence curve Kaplan-Meier estimator kernel smoothing quantile residual lifetime right censored data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部