A class of nonlinear global climate oscillation models is considered. Using perturbation theory and its methods, solutions to the asymptotic expansions of some related problems are constructed. These asymptotic expans...A class of nonlinear global climate oscillation models is considered. Using perturbation theory and its methods, solutions to the asymptotic expansions of some related problems are constructed. These asymptotic expansions of the solutions for the original problem possess a higher approximation. The perturbed asymptotic method is an analyti cmethod.展开更多
This paper discussed the stability of model of an age structured population systems,proved that the equilibrium solution systems is globally asymptotically stable.
A nonlinear reaction diffusion equations for activator inhibitor systems is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained, secondly, using the variables of mult...A nonlinear reaction diffusion equations for activator inhibitor systems is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained, secondly, using the variables of multiple scales and the expanding theory of power series the formal asymptotic expansions of the solution are constructed, and finally, using the theory of differential inequalities the uniform validity and asymptotic behavior of the solution are studied.展开更多
For the Generalized Linear Model (GLM), under some conditions including that the specification of the expectation is correct, it is shown that the Quasi Maximum Likelihood Estimate (QMLE) of the parameter-vector is as...For the Generalized Linear Model (GLM), under some conditions including that the specification of the expectation is correct, it is shown that the Quasi Maximum Likelihood Estimate (QMLE) of the parameter-vector is asymptotic normal. It is also shown that the asymptotic covariance matrix of the QMLE reaches its minimum (in the positive-definte sense) in case that the specification of the covariance matrix is correct.展开更多
In generalized linear models with fixed design, under the assumption λ↑_n→∞ and other regularity conditions, the asymptotic normality of maximum quasi-likelihood estimator ^↑βn, which is the root of the quasi-li...In generalized linear models with fixed design, under the assumption λ↑_n→∞ and other regularity conditions, the asymptotic normality of maximum quasi-likelihood estimator ^↑βn, which is the root of the quasi-likelihood equation with natural link function ∑i=1^n Xi(yi -μ(Xi′β)) = 0, is obtained, where λ↑_n denotes the minimum eigenvalue of ∑i=1^nXiXi′, Xi are bounded p × q regressors, and yi are q × 1 responses.展开更多
Let M^n be a smooth, compact manifold without boundary, and F0 : M^n→ R^n+1 a smooth immersion which is convex. The one-parameter families F(·, t) : M^n× [0, T) → R^n+1 of hypersurfaces Mt^n= F(...Let M^n be a smooth, compact manifold without boundary, and F0 : M^n→ R^n+1 a smooth immersion which is convex. The one-parameter families F(·, t) : M^n× [0, T) → R^n+1 of hypersurfaces Mt^n= F(·,t)(M^n) satisfy an initial value problem dF/dt (·,t) = -H^k(· ,t)v(· ,t), F(· ,0) = F0(· ), where H is the mean curvature and u(·,t) is the outer unit normal at F(·, t), such that -Hu = H is the mean curvature vector, and k 〉 0 is a constant. This problem is called H^k-fiow. Such flow will develop singularities after finite time. According to the blow-up rate of the square norm of the second fundamental forms, the authors analyze the structure of the rescaled limit by classifying the singularities as two types, i.e., Type Ⅰ and Type Ⅱ. It is proved that for Type Ⅰ singularity, the limiting hypersurface satisfies an elliptic equation; for Type Ⅱ singularity, the limiting hypersurface must be a translating soliton.展开更多
We study the properties of the Lasso in the high-dimensional partially linear model where the number of variables in the linear part can be greater than the sample size.We use truncated series expansion based on polyn...We study the properties of the Lasso in the high-dimensional partially linear model where the number of variables in the linear part can be greater than the sample size.We use truncated series expansion based on polynomial splines to approximate the nonparametric component in this model.Under a sparsity assumption on the regression coefficients of the linear component and some regularity conditions,we derive the oracle inequalities for the prediction risk and the estimation error.We also provide sufficient conditions under which the Lasso estimator is selection consistent for the variables in the linear part of the model.In addition,we derive the rate of convergence of the estimator of the nonparametric function.We conduct simulation studies to evaluate the finite sample performance of variable selection and nonparametric function estimation.展开更多
Relative error rather than the error itself is of the main interest in many practical applications. Criteria based on minimizing the sum of absolute relative errors (MRE) and the sum of squared relative errors (RLS...Relative error rather than the error itself is of the main interest in many practical applications. Criteria based on minimizing the sum of absolute relative errors (MRE) and the sum of squared relative errors (RLS) were proposed in the different areas. Motivated by K. Chen et al.'s recent work [J. Amer. Statist. Assoc., 2010, 105: 1104-1112] on the least absolute relative error (LARE) estimation for the accelerated failure time (AFT) model, in this paper, we establish the connection between relative error estimators and the M-estimation in the linear model. This connection allows us to deduce the asymptotic properties of many relative error estimators (e.g., LARE) by the well-developed M-estimation theories. On the other hand, the asymptotic properties of some important estimators (e.g., MRE and RLS) cannot be established directly. In this paper, we propose a general relative error criterion (GREC) for estimating the unknown parameter in the AFT model. Then we develop the approaches to deal with the asymptotic normalities for M-estimators with differentiable loss functions on R or R/{0} in the linear model. The simulation studies are conducted to evaluate the performance of the proposed estimates for the different scenarios. Illustration with a real data example is also provided.展开更多
This paper is devoted to describing the asymptotic behavior of a structure made by a thin plate and a thin perpendicular rod in the framework of nonlinear elasticity. The authors scale the applied forces in such a way...This paper is devoted to describing the asymptotic behavior of a structure made by a thin plate and a thin perpendicular rod in the framework of nonlinear elasticity. The authors scale the applied forces in such a way that the level of the total elastic energy leads to the Von-Karman's equations (or the linear model for smaller forces) in the plate and to a one-dimensional rod-model at the limit. The junction conditions include in particular the continuity of the bending in the plate and the stretching in the rod at the junction.展开更多
This work is concerned with identification of systems that are subject to not only measurement noises, but also structural uncertainties such as unmodeled dynamics, sensor nonlinear mismatch, and observation bins. Ide...This work is concerned with identification of systems that are subject to not only measurement noises, but also structural uncertainties such as unmodeled dynamics, sensor nonlinear mismatch, and observation bins. Identification errors are analyzed for their dependence on these structural uncertainties. Asymptotic distributions of scaled sequences of estimation errors are derived.展开更多
This paper studies the parameter estimation of multiple dimensional linear errors-in-variables (EV) models in the case where replicated observations are available in some experimental points. Asymptotic normality is e...This paper studies the parameter estimation of multiple dimensional linear errors-in-variables (EV) models in the case where replicated observations are available in some experimental points. Asymptotic normality is established under mild conditions, and the parameters entering the asymptotic variance are consistently estimated to render the result useable in the construction of large-sample confidence regions.展开更多
基金supported by the support of the National Natural Science Foundation of China (Grant No. 40676016)the State Key Development Program for Basic Research of China (Grant Nos. 2003CB415101-03, 2004CB418304)+1 种基金the Key of the Knowledge Innovation of the Chinese Academy of Sciences (Grant No. KZCX3-SW-221)in part, by the E-Institutes of Shanghai Municipal Education Commission (Grant No. E03004)
文摘A class of nonlinear global climate oscillation models is considered. Using perturbation theory and its methods, solutions to the asymptotic expansions of some related problems are constructed. These asymptotic expansions of the solutions for the original problem possess a higher approximation. The perturbed asymptotic method is an analyti cmethod.
文摘This paper discussed the stability of model of an age structured population systems,proved that the equilibrium solution systems is globally asymptotically stable.
基金the National Natural Science Foundation of China under Grant Nos.40676016 and 10471039the National Key Project for Basics Research under Grant Nos.2003CB415101-03 and 2004CB418304+1 种基金the Key Project of the Chinese Academy of Sciences under Grant No.KZCX3-SW-221in part by E-Insitutes of Shanghai Municipal Education Commission under Grant No.E03004
文摘A nonlinear reaction diffusion equations for activator inhibitor systems is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained, secondly, using the variables of multiple scales and the expanding theory of power series the formal asymptotic expansions of the solution are constructed, and finally, using the theory of differential inequalities the uniform validity and asymptotic behavior of the solution are studied.
基金Project supported by the National Natural Science Foundation of China.
文摘For the Generalized Linear Model (GLM), under some conditions including that the specification of the expectation is correct, it is shown that the Quasi Maximum Likelihood Estimate (QMLE) of the parameter-vector is asymptotic normal. It is also shown that the asymptotic covariance matrix of the QMLE reaches its minimum (in the positive-definte sense) in case that the specification of the covariance matrix is correct.
基金the National Natural Science Foundation of China under Grant Nos.10171094,10571001,and 30572285the Foundation of Nanjing Normal University under Grant No.2005101XGQ2B84+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No.07KJD110093the Foundation of Anhui University under Grant No.02203105
文摘In generalized linear models with fixed design, under the assumption λ↑_n→∞ and other regularity conditions, the asymptotic normality of maximum quasi-likelihood estimator ^↑βn, which is the root of the quasi-likelihood equation with natural link function ∑i=1^n Xi(yi -μ(Xi′β)) = 0, is obtained, where λ↑_n denotes the minimum eigenvalue of ∑i=1^nXiXi′, Xi are bounded p × q regressors, and yi are q × 1 responses.
基金supported by the National Natural Science Foundation of China (Nos. 10771189, 10831008)
文摘Let M^n be a smooth, compact manifold without boundary, and F0 : M^n→ R^n+1 a smooth immersion which is convex. The one-parameter families F(·, t) : M^n× [0, T) → R^n+1 of hypersurfaces Mt^n= F(·,t)(M^n) satisfy an initial value problem dF/dt (·,t) = -H^k(· ,t)v(· ,t), F(· ,0) = F0(· ), where H is the mean curvature and u(·,t) is the outer unit normal at F(·, t), such that -Hu = H is the mean curvature vector, and k 〉 0 is a constant. This problem is called H^k-fiow. Such flow will develop singularities after finite time. According to the blow-up rate of the square norm of the second fundamental forms, the authors analyze the structure of the rescaled limit by classifying the singularities as two types, i.e., Type Ⅰ and Type Ⅱ. It is proved that for Type Ⅰ singularity, the limiting hypersurface satisfies an elliptic equation; for Type Ⅱ singularity, the limiting hypersurface must be a translating soliton.
文摘We study the properties of the Lasso in the high-dimensional partially linear model where the number of variables in the linear part can be greater than the sample size.We use truncated series expansion based on polynomial splines to approximate the nonparametric component in this model.Under a sparsity assumption on the regression coefficients of the linear component and some regularity conditions,we derive the oracle inequalities for the prediction risk and the estimation error.We also provide sufficient conditions under which the Lasso estimator is selection consistent for the variables in the linear part of the model.In addition,we derive the rate of convergence of the estimator of the nonparametric function.We conduct simulation studies to evaluate the finite sample performance of variable selection and nonparametric function estimation.
文摘Relative error rather than the error itself is of the main interest in many practical applications. Criteria based on minimizing the sum of absolute relative errors (MRE) and the sum of squared relative errors (RLS) were proposed in the different areas. Motivated by K. Chen et al.'s recent work [J. Amer. Statist. Assoc., 2010, 105: 1104-1112] on the least absolute relative error (LARE) estimation for the accelerated failure time (AFT) model, in this paper, we establish the connection between relative error estimators and the M-estimation in the linear model. This connection allows us to deduce the asymptotic properties of many relative error estimators (e.g., LARE) by the well-developed M-estimation theories. On the other hand, the asymptotic properties of some important estimators (e.g., MRE and RLS) cannot be established directly. In this paper, we propose a general relative error criterion (GREC) for estimating the unknown parameter in the AFT model. Then we develop the approaches to deal with the asymptotic normalities for M-estimators with differentiable loss functions on R or R/{0} in the linear model. The simulation studies are conducted to evaluate the performance of the proposed estimates for the different scenarios. Illustration with a real data example is also provided.
文摘This paper is devoted to describing the asymptotic behavior of a structure made by a thin plate and a thin perpendicular rod in the framework of nonlinear elasticity. The authors scale the applied forces in such a way that the level of the total elastic energy leads to the Von-Karman's equations (or the linear model for smaller forces) in the plate and to a one-dimensional rod-model at the limit. The junction conditions include in particular the continuity of the bending in the plate and the stretching in the rod at the junction.
文摘This work is concerned with identification of systems that are subject to not only measurement noises, but also structural uncertainties such as unmodeled dynamics, sensor nonlinear mismatch, and observation bins. Identification errors are analyzed for their dependence on these structural uncertainties. Asymptotic distributions of scaled sequences of estimation errors are derived.
基金This project is supported by the National Natural Science Foundation of China (No.19631040)
文摘This paper studies the parameter estimation of multiple dimensional linear errors-in-variables (EV) models in the case where replicated observations are available in some experimental points. Asymptotic normality is established under mild conditions, and the parameters entering the asymptotic variance are consistently estimated to render the result useable in the construction of large-sample confidence regions.