A general top system of two free dimensions with parameter is studied and the four cases satisfied by the frequency of the system are discussed.Using the multiple scale method,its uniformly valid asymptotic solution,w...A general top system of two free dimensions with parameter is studied and the four cases satisfied by the frequency of the system are discussed.Using the multiple scale method,its uniformly valid asymptotic solution,which is expressed by complex amplitudes,of the first order is obtained.And solvable conditions satisfied by the complex amplitudes are given,and then the relative result is generalized.展开更多
The main purpose of this paper is using the properties of the classical Gauss sum and the analytic methods to study the computational problem of one kind of hybrid power mean involving the character sum of polynomials...The main purpose of this paper is using the properties of the classical Gauss sum and the analytic methods to study the computational problem of one kind of hybrid power mean involving the character sum of polynomials and a sum analogous to Kloosterman sum mod p,an odd prime,and give two sharp asymptotic formulae for them.展开更多
In this paper, the authors deal with the non-constant positive steady-states of a predator-prey-mutualist model with homogeneous Neumann boundary condition. They first give a priori estimates (positive upper and lower...In this paper, the authors deal with the non-constant positive steady-states of a predator-prey-mutualist model with homogeneous Neumann boundary condition. They first give a priori estimates (positive upper and lower bounds) of positive steady-states,and then study the non-existence, the global existence and bifurcation of non-constant positive steady-states as some parameters are varied. Finally the asymptotic behavior of such solutions as d3 →∞ is discussed.展开更多
For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the...For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the asymptotic error expansions of bilinear finite element have the accuracy of O(h3)for u∈H3.Based on the obtained asymptotic error expansions for linear finite elements,extrapolation cascadic multigrid method(EXCMG)can be used to solve Robin problems effectively.Furthermore,by virtue of Richardson not only the accuracy of the approximation is improved,but also a posteriori error estimation is obtained.Finally,some numerical experiments that confirm the theoretical analysis are presented.展开更多
We study the global dynamics of a nonlocal population model with age structure in a bounded domain. We mainly concern with the case where the birth rate decreases as the mature population size become large. The analys...We study the global dynamics of a nonlocal population model with age structure in a bounded domain. We mainly concern with the case where the birth rate decreases as the mature population size become large. The analysis is rather subtle and it is inadequate to apply the powerful theory of monotone dynamical systems. By using the method of super-sub solutions, combined with the careful analysis of the kernel function in the nonlocal term, we prove nonexistence, existence and uniqueness of positive steady states of the model.Moreover, due to the mature individuals do not diffuse, the solution semiflow to the model is not compact. To overcome the difficulty of non-compactness in describing the global asymptotic stability of the unique positive steady state, we first establish an appropriate comparison principle. With the help of the comparison principle,we can employ the theory of dissipative systems to obtain the global asymptotic stability of the unique positive steady state. The main results are illustrated with the nonlocal Nicholson's blowflies equation and the nonlocal Mackey-Glass equation.展开更多
基金Supported by the NNSF of China(10471039)Supported by the Natural Science Foundation of Zhejiang Province(Y606268)Supported by the E-Institutes of Shanghai Municipal Education Commission(E03004)
文摘A general top system of two free dimensions with parameter is studied and the four cases satisfied by the frequency of the system are discussed.Using the multiple scale method,its uniformly valid asymptotic solution,which is expressed by complex amplitudes,of the first order is obtained.And solvable conditions satisfied by the complex amplitudes are given,and then the relative result is generalized.
基金Supported by NSFC(No.12126357)Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JC-QN-0058)。
文摘The main purpose of this paper is using the properties of the classical Gauss sum and the analytic methods to study the computational problem of one kind of hybrid power mean involving the character sum of polynomials and a sum analogous to Kloosterman sum mod p,an odd prime,and give two sharp asymptotic formulae for them.
基金Project supported by the National Natural Science Foundation of China (No.19831060) the 333 Project of Jiangsu Province of China.
文摘In this paper, the authors deal with the non-constant positive steady-states of a predator-prey-mutualist model with homogeneous Neumann boundary condition. They first give a priori estimates (positive upper and lower bounds) of positive steady-states,and then study the non-existence, the global existence and bifurcation of non-constant positive steady-states as some parameters are varied. Finally the asymptotic behavior of such solutions as d3 →∞ is discussed.
基金supported by National Natural Science Foundation of China(Grant Nos.11226332,41204082 and 11071067)the China Postdoctoral Science Foundation(Grant No.2011M501295)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120162120036)the Construct Program of the Key Discipline in Hunan Province
文摘For the Poisson equation with Robin boundary conditions,by using a few techniques such as orthogonal expansion(M-type),separation of the main part and the finite element projection,we prove for the first time that the asymptotic error expansions of bilinear finite element have the accuracy of O(h3)for u∈H3.Based on the obtained asymptotic error expansions for linear finite elements,extrapolation cascadic multigrid method(EXCMG)can be used to solve Robin problems effectively.Furthermore,by virtue of Richardson not only the accuracy of the approximation is improved,but also a posteriori error estimation is obtained.Finally,some numerical experiments that confirm the theoretical analysis are presented.
基金supported by National Natural Science Foundation of China(Grant Nos.11031002 and 11371107)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20124410110001)
文摘We study the global dynamics of a nonlocal population model with age structure in a bounded domain. We mainly concern with the case where the birth rate decreases as the mature population size become large. The analysis is rather subtle and it is inadequate to apply the powerful theory of monotone dynamical systems. By using the method of super-sub solutions, combined with the careful analysis of the kernel function in the nonlocal term, we prove nonexistence, existence and uniqueness of positive steady states of the model.Moreover, due to the mature individuals do not diffuse, the solution semiflow to the model is not compact. To overcome the difficulty of non-compactness in describing the global asymptotic stability of the unique positive steady state, we first establish an appropriate comparison principle. With the help of the comparison principle,we can employ the theory of dissipative systems to obtain the global asymptotic stability of the unique positive steady state. The main results are illustrated with the nonlocal Nicholson's blowflies equation and the nonlocal Mackey-Glass equation.