The composite trapezoidal rule for the computation of Hadamard finite-part integrals in boundary element methods with the hypersingular kernel I/sin2(x- s) is discussed, and the main part of the asymptotic expansion...The composite trapezoidal rule for the computation of Hadamard finite-part integrals in boundary element methods with the hypersingular kernel I/sin2(x- s) is discussed, and the main part of the asymptotic expansion of error function is obtained. Based on the main part of the asymptotic expansion, a series is constructed to approach the singular point. An extrapolation algorithm is presented and the convergence rate is proved. Some numerical results are also presented to confirm the theoretical results and show the efficiency of the algorithms.展开更多
Applications for piezoelectric effect have grown rapidly, and piezoelectric materials play important roles in countless areas of modem life. By means of twoscale method and coupled boundary layer, some new kinds of tw...Applications for piezoelectric effect have grown rapidly, and piezoelectric materials play important roles in countless areas of modem life. By means of twoscale method and coupled boundary layer, some new kinds of twoscale asymptotic expansions for solutions to the electrical potential and the displacement in quasi-periodic structure under coupled piezoelectric effect are derived, and the homogenization constants of piezoelectric materials are presented. The coupled twoscale relation between the electrical potential and the displacement is set up, and some improved asymptotic error estimates are analyzed.展开更多
The authors modify a method of Olde Daalhuis and Temme for representing the remainder and coefficients in Airy-type expansions of integrals.By using a class of rational functions,they express these quantities in terms...The authors modify a method of Olde Daalhuis and Temme for representing the remainder and coefficients in Airy-type expansions of integrals.By using a class of rational functions,they express these quantities in terms of Cauchy-type integrals;these expressions are natural generalizations of integral representations of the coe?cients and the remainders in the Taylor expansions of analytic functions.By using the new representation,a computable error bound for the remainder in the uniform asymptotic expansion of the modified Bessel function of purely imaginary order is derived.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos. 11101247 and 11201209)Shandong Provincial Natural Science Foundation of China (Grant No.ZR2011AQ020)+3 种基金a project of Shandong Province Higher Educational Science and Technology Program (GrantNo. J11LE08)supported by National Natural Science Foundation of China (GrantNo. 11101317)supported by National Basic Research Program of China (Grant No.2005CB321701)the Reward Fund of CAS for National Prize
文摘The composite trapezoidal rule for the computation of Hadamard finite-part integrals in boundary element methods with the hypersingular kernel I/sin2(x- s) is discussed, and the main part of the asymptotic expansion of error function is obtained. Based on the main part of the asymptotic expansion, a series is constructed to approach the singular point. An extrapolation algorithm is presented and the convergence rate is proved. Some numerical results are also presented to confirm the theoretical results and show the efficiency of the algorithms.
基金supported by the National Natural Science Foundation of China(Grant Nos.10801042,11126132,and 11171257)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20104410120001)San Diego supported by China Scholarship Council from July 2012 to July 2013
文摘Applications for piezoelectric effect have grown rapidly, and piezoelectric materials play important roles in countless areas of modem life. By means of twoscale method and coupled boundary layer, some new kinds of twoscale asymptotic expansions for solutions to the electrical potential and the displacement in quasi-periodic structure under coupled piezoelectric effect are derived, and the homogenization constants of piezoelectric materials are presented. The coupled twoscale relation between the electrical potential and the displacement is set up, and some improved asymptotic error estimates are analyzed.
文摘The authors modify a method of Olde Daalhuis and Temme for representing the remainder and coefficients in Airy-type expansions of integrals.By using a class of rational functions,they express these quantities in terms of Cauchy-type integrals;these expressions are natural generalizations of integral representations of the coe?cients and the remainders in the Taylor expansions of analytic functions.By using the new representation,a computable error bound for the remainder in the uniform asymptotic expansion of the modified Bessel function of purely imaginary order is derived.