The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the...The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the higher the electric conductivity (EC) of irrigation water,the higher the soil HC became.The soil HC doubled when EC increased from 0.1 to 6.0ds m^-1.High sodium-adsorption ratio(SAR) of irrigation water would have an unfavorable effect on soil HC.Soil HC decreased with the increasing of SAR,especially in the case of higher soil suction.An interaction existed between the effects of EC and SAR of irrigation water on soil HC.The HC of unsaturated soil dependent upon the macropores in surface soil decreased by one order of magnitude with 1 KPa increase of soil suction.In the study on the effect of very low soluble salt concentration (EC=0.1 ds m^-1 of irrigation water on soil HC,soil HC was found to be lowered by 30% as a consequence of blocking up of some continuous pores by the dispersed and migrated clay particles.Nonlinear successive regression analysis and significance test show that the effects of EC and SAR of irrigation water on soil HC reached the extremely significant level.展开更多
In order to reveal the law of raw coal seepage at different gas pressures, the gravity constant load seepage experimental system was developed and used. The law of raw coal seepage at different gas pressures with He, ...In order to reveal the law of raw coal seepage at different gas pressures, the gravity constant load seepage experimental system was developed and used. The law of raw coal seepage at different gas pressures with He, N2 and CO2 was investigated. The results show that, in a given state of stress during the experiment, with the increase of gas pressure, the permeability of raw coal sample prone to outburst exhibits a significantly decrease, and then exhibits an increasing trend when reaching the extreme point. The law of Klingberg coefficient related to the stress state and the gas adsorption properties was also obtained. Under the same experimental conditions, the Klingberg coefficient of He is greater than that of N2; and the Klingberg coefficient of CO2 has minimum value; so the stronger the gas adsorption is, the smaller the Klingberg coefficient of gas goes. Klinkenberg coefficient decreases with the increase of effective stress. Under the same conditions, the permeability of He is greater than that of N2; the permeability of CO2 has minimum value; so the stronger the gas adsorption is, the lower the permeability of the coal sample goes. The results have important significance in revealing the mechanism of gas seenage. Dredicting coal mine gas disaster, and gas drainage and safety nroduction.展开更多
To study the effects of CBM (coal bed methane) temperature-rising desorption, isothermal adsorption/desorption experiments on three ranks (anthracite, coking coal and lignite) of coal at different temperatures wer...To study the effects of CBM (coal bed methane) temperature-rising desorption, isothermal adsorption/desorption experiments on three ranks (anthracite, coking coal and lignite) of coal at different temperatures were designed based on the traditional CBM decompression desorption. The experimental results indicate that temperature-rising desorption is more effec- tive in high-rank coal, and ever-increasing temperature of high-rank coal reservoir can reduce the negative effects of coal ma- trix shrinkage in the process of production and improve the permeability of the coal reservoir as well. It is also revealed that the technique of temperature-rising desorption applied in higher-rank coal reservoir can enhance CBM recovery ratio. This study provided theoretical support for the application of temperature-rising desorption technique in practical discharging and mining projects, which can effectively tackle the gas production bottleneck problem.展开更多
文摘The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the higher the electric conductivity (EC) of irrigation water,the higher the soil HC became.The soil HC doubled when EC increased from 0.1 to 6.0ds m^-1.High sodium-adsorption ratio(SAR) of irrigation water would have an unfavorable effect on soil HC.Soil HC decreased with the increasing of SAR,especially in the case of higher soil suction.An interaction existed between the effects of EC and SAR of irrigation water on soil HC.The HC of unsaturated soil dependent upon the macropores in surface soil decreased by one order of magnitude with 1 KPa increase of soil suction.In the study on the effect of very low soluble salt concentration (EC=0.1 ds m^-1 of irrigation water on soil HC,soil HC was found to be lowered by 30% as a consequence of blocking up of some continuous pores by the dispersed and migrated clay particles.Nonlinear successive regression analysis and significance test show that the effects of EC and SAR of irrigation water on soil HC reached the extremely significant level.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2011QZ02)the National Natural Science Foundation of China (No. 51204189)the National Basic Research Program of China (No. 2011CB201202)
文摘In order to reveal the law of raw coal seepage at different gas pressures, the gravity constant load seepage experimental system was developed and used. The law of raw coal seepage at different gas pressures with He, N2 and CO2 was investigated. The results show that, in a given state of stress during the experiment, with the increase of gas pressure, the permeability of raw coal sample prone to outburst exhibits a significantly decrease, and then exhibits an increasing trend when reaching the extreme point. The law of Klingberg coefficient related to the stress state and the gas adsorption properties was also obtained. Under the same experimental conditions, the Klingberg coefficient of He is greater than that of N2; and the Klingberg coefficient of CO2 has minimum value; so the stronger the gas adsorption is, the smaller the Klingberg coefficient of gas goes. Klinkenberg coefficient decreases with the increase of effective stress. Under the same conditions, the permeability of He is greater than that of N2; the permeability of CO2 has minimum value; so the stronger the gas adsorption is, the lower the permeability of the coal sample goes. The results have important significance in revealing the mechanism of gas seenage. Dredicting coal mine gas disaster, and gas drainage and safety nroduction.
文摘To study the effects of CBM (coal bed methane) temperature-rising desorption, isothermal adsorption/desorption experiments on three ranks (anthracite, coking coal and lignite) of coal at different temperatures were designed based on the traditional CBM decompression desorption. The experimental results indicate that temperature-rising desorption is more effec- tive in high-rank coal, and ever-increasing temperature of high-rank coal reservoir can reduce the negative effects of coal ma- trix shrinkage in the process of production and improve the permeability of the coal reservoir as well. It is also revealed that the technique of temperature-rising desorption applied in higher-rank coal reservoir can enhance CBM recovery ratio. This study provided theoretical support for the application of temperature-rising desorption technique in practical discharging and mining projects, which can effectively tackle the gas production bottleneck problem.