Taking low permeability cores of Daqing oilfield for example,the flow characteristics at low velocity were studied with the self-designed micro-flux measuring instrument.Considering the throat distribution and capilla...Taking low permeability cores of Daqing oilfield for example,the flow characteristics at low velocity were studied with the self-designed micro-flux measuring instrument.Considering the throat distribution and capillary model,the thickness of fluid boundary layer under different pressure gradients was calculated,and the mechanism and influencing factors of nonlinear percolation were discussed.The results show that the percolation curve of ultra-low rocks is nonlinear,and apparent permeability is not a constant which increases with pressure gradient.The absorption boundary layer decreases with the increase of pressure gradient,and changes significantly especially in low pressure gradient,which is the essence of nonlinear percolation.The absorption boundary layer is also found to be impacted by the surface property of rocks.展开更多
To investigate the convection in a porous medium, a horizontal quiescent layer of one fluid saturating a porous medium heated from bottom is numerically studied using single lattice-Boltzmann method (LBM) and the ge...To investigate the convection in a porous medium, a horizontal quiescent layer of one fluid saturating a porous medium heated from bottom is numerically studied using single lattice-Boltzmann method (LBM) and the generalized Navier Stokes equation proposed by Nithiarasu et al. [P. Nithiarasu, K.M. Seetharamu, and T Sundararajan Int. J. Heat Mass Trans. 40 (1997) 3955]. Due to the rarefaction, the boundary conditions are considered as both temperature jump and velocity slip. The computational results are vahdated against the analytical results, and excellent agreement has been obtained. The results have shown that the Rayleigh number is increased with increasing temperature jump, the stabilization effect of temperature is much more significant than that of velocity slip, and the computation stability of present model is better than that of Darey and Brinkman models.展开更多
This paper presents the one-dimensional(1D)viscoelastic consolidation system of saturated clayey soil under continuous drainage boundaries.The fractional-derivative Merchant(FDM)model has been introduced into the cons...This paper presents the one-dimensional(1D)viscoelastic consolidation system of saturated clayey soil under continuous drainage boundaries.The fractional-derivative Merchant(FDM)model has been introduced into the consolidation system to simulate the viscoelasticity.Swartzendruber’s flow law is also introduced to describe the non-Darcian flow characteristics simultaneously.The generalized numerical solution of the 1D consolidation under continuous boundaries is given by the finite difference scheme.Furthermore,to illustrate the effectiveness of the numerical method,two simplified cases are compared against the current analytical and numerical results.Finally,the effects of boundary parameters and model parameters on the viscoelastic consolidation were illustrated and discussed.The results indicated that the boundary parameters have a significant influence on consolidation.The larger the values of boundary parameters,the faster the whole dissipation of the excess pore-water pressure and soils’settlement rate.Fractional-order and viscosity parameter have little effect on consolidation,which are primarily significant in the middle and late consolidation phases.With the increase of the modulus ratio,the whole consolidation process becomes faster.Moreover,considering Swartzendruber’s flow delays the consolidation rate of the soil layer.展开更多
In this paper, we have discussed the food movement in stomach with thermal bound- ary conditions. Eyring-Prandtl fluid model is considered. Formulation of the considered phenomena have been developed for both fixed an...In this paper, we have discussed the food movement in stomach with thermal bound- ary conditions. Eyring-Prandtl fluid model is considered. Formulation of the considered phenomena have been developed for both fixed and moving frame of references. Regular perturbation is used to find the solution of stream function, temperature profile and pressure gradient. Analysis has been carried out for velocity, "stream function, temper- ature, pressure gradient and heat transfer". Appearance of pressure gradient is quite complicated so to get the expression for pressure rise we have used numerical integra- tion. It is perceived that the velocity close to the channel walls is not same in outlook of the Eyrin^Prandtl fluid parameter taken as fl and Hartman number M. The velocity decreases by increasing β and M.展开更多
基金Project(2008ZX05013) supported by the National Science and Technology Project of ChinaProject(10672187) supported by the National Natural Science Foundation of China
文摘Taking low permeability cores of Daqing oilfield for example,the flow characteristics at low velocity were studied with the self-designed micro-flux measuring instrument.Considering the throat distribution and capillary model,the thickness of fluid boundary layer under different pressure gradients was calculated,and the mechanism and influencing factors of nonlinear percolation were discussed.The results show that the percolation curve of ultra-low rocks is nonlinear,and apparent permeability is not a constant which increases with pressure gradient.The absorption boundary layer decreases with the increase of pressure gradient,and changes significantly especially in low pressure gradient,which is the essence of nonlinear percolation.The absorption boundary layer is also found to be impacted by the surface property of rocks.
基金The project supported by National Natural Science Foundation of China under Grant No.10572130the National Basic Research Programs of China under Grant No.2006CB708612+1 种基金the Research Grants Council of the Government of the HKSAR under Grant Nos.PolyU5221/05E and PolyU 5231/06E PolyUNatural Science Foundation of Zhejiang Province of China under Grant No.Y607425
文摘To investigate the convection in a porous medium, a horizontal quiescent layer of one fluid saturating a porous medium heated from bottom is numerically studied using single lattice-Boltzmann method (LBM) and the generalized Navier Stokes equation proposed by Nithiarasu et al. [P. Nithiarasu, K.M. Seetharamu, and T Sundararajan Int. J. Heat Mass Trans. 40 (1997) 3955]. Due to the rarefaction, the boundary conditions are considered as both temperature jump and velocity slip. The computational results are vahdated against the analytical results, and excellent agreement has been obtained. The results have shown that the Rayleigh number is increased with increasing temperature jump, the stabilization effect of temperature is much more significant than that of velocity slip, and the computation stability of present model is better than that of Darey and Brinkman models.
基金Projects(51879104,52078206)supported by the National Natural Science Foundation of China。
文摘This paper presents the one-dimensional(1D)viscoelastic consolidation system of saturated clayey soil under continuous drainage boundaries.The fractional-derivative Merchant(FDM)model has been introduced into the consolidation system to simulate the viscoelasticity.Swartzendruber’s flow law is also introduced to describe the non-Darcian flow characteristics simultaneously.The generalized numerical solution of the 1D consolidation under continuous boundaries is given by the finite difference scheme.Furthermore,to illustrate the effectiveness of the numerical method,two simplified cases are compared against the current analytical and numerical results.Finally,the effects of boundary parameters and model parameters on the viscoelastic consolidation were illustrated and discussed.The results indicated that the boundary parameters have a significant influence on consolidation.The larger the values of boundary parameters,the faster the whole dissipation of the excess pore-water pressure and soils’settlement rate.Fractional-order and viscosity parameter have little effect on consolidation,which are primarily significant in the middle and late consolidation phases.With the increase of the modulus ratio,the whole consolidation process becomes faster.Moreover,considering Swartzendruber’s flow delays the consolidation rate of the soil layer.
文摘In this paper, we have discussed the food movement in stomach with thermal bound- ary conditions. Eyring-Prandtl fluid model is considered. Formulation of the considered phenomena have been developed for both fixed and moving frame of references. Regular perturbation is used to find the solution of stream function, temperature profile and pressure gradient. Analysis has been carried out for velocity, "stream function, temper- ature, pressure gradient and heat transfer". Appearance of pressure gradient is quite complicated so to get the expression for pressure rise we have used numerical integra- tion. It is perceived that the velocity close to the channel walls is not same in outlook of the Eyrin^Prandtl fluid parameter taken as fl and Hartman number M. The velocity decreases by increasing β and M.