The similarities and differences in seepage flow evolution laws of CH4 and CO2 during complete stress- strain process of samples were comparatively analyzed. The results show that the seepage flow evolution laws of CH...The similarities and differences in seepage flow evolution laws of CH4 and CO2 during complete stress- strain process of samples were comparatively analyzed. The results show that the seepage flow evolution laws of CH4 and CO2 are extremely similar during the stress-strain process, showing that the character- istic first decreased and then increased. A mathematical model was also established according to the rela- tionship of seepage velocity and axial strain. However, due to the strong adsorption ability of CO2, the coal samples generated a more serious ''Klinkenberg effect'' under the condition of CO2. Owing to this, the CO2 seepage flow resulted into occurrence of ''stagnation'' phenomenon during the late linear elastic stage II. In the strain consolidation stage III, the increment rate of CH4 seepage velocity was significantly greater than that of CO2. In the stress descent stage IV, when the axial load reached the peak pressure of coal, the increment rates of CH4 seepage velocity presented a turning point. But the changing rate of CO2 seepage velocity still remained slow and a turning point was presented at one time after the peak of thestrain pressure, which showed an obvious feature of hysteresis.展开更多
Coalbed gas non-Darcy flow has been observed in high permeable fracture systems,and some mathematical and numerical models have been proposed to study the effects of non-Darcy flow using Forchheimer non-Darcy model.Ho...Coalbed gas non-Darcy flow has been observed in high permeable fracture systems,and some mathematical and numerical models have been proposed to study the effects of non-Darcy flow using Forchheimer non-Darcy model.However,experimental results show that the assumption of a constant Forchheimer factor may cause some limitations in using Forchheimer model to describe non-Darcy flow in porous media.In order to investigate the effects of non-Darcy flow on coalbed methane production,this work presents a more general coalbed gas non-Darcy flow model according to Barree-Conway equation,which could describe the entire range of relationships between flow velocity and pressure gradient from low to high flow velocity.An expanded mixed finite element method is introduced to solve the coalbed gas non-Darcy flow model,in which the gas pressure and velocity can be approximated simultaneously.Error estimate results indicate that pressure and velocity could achieve first-order convergence rate.Non-Darcy simulation results indicate that the non-Darcy effect is significant in the zone near the wellbore,and with the distance from the wellbore increasing,the non-Darcy effect becomes weak gradually.From simulation results,we have also found that the non-Darcy effect is more significant at a lower bottom-hole pressure,and the gas production from non-Darcy flow is lower than the production from Darcy flow under the same permeable condition.展开更多
Activities by various authors on aerodynamics and control dynamics of rotating stall in axial compressor are first traced. Then, a process of stall cell evolution in a subsonic stage is discussed based on a 2-D CFD. A...Activities by various authors on aerodynamics and control dynamics of rotating stall in axial compressor are first traced. Then, a process of stall cell evolution in a subsonic stage is discussed based on a 2-D CFD. A few numbers of vortices grow ahead of the rotor accumulating vorticity ejected from lightly stalled blades, and eventually organize a cell of circumferentially aligned huge vortices, which merge and recess repeatedly during the rotation. Such stall disturbance is intensified on trailing side of a circumferential inlet distortion and decays on the leading side. Considering these features, a new algorithm for stall warning is developed based on a correlation between pressure waveforms at each passing of a fixed blade. A remarkable change in the correlation level at near-stall provides a warning signal prior to the stall onset with sufficiently large time margin. This scheme is applied to achieve rotating stall prevention by actuating flaps installed on the hub. The last issue is on characteristics of forward swept blade which has much increased throttle margin with decreased tip loss. A 3-D computation shows that a secondary vortex generated in suction surface mid span interacts to reduce the tip leakage vortex that initiates the stall.展开更多
Power generation by reverse electrodialysis in ion-selective nanochannels is numerically investigated. Especially,in the present study, the influence of hydrodynamic slip at the surface of nanochannels is investigated...Power generation by reverse electrodialysis in ion-selective nanochannels is numerically investigated. Especially,in the present study, the influence of hydrodynamic slip at the surface of nanochannels is investigated. The current-potential characteristics of the nanochannels are calculated by solving several governing equations:Nernst-Planck equation for the ionic concentrations, the Poisson equation for the electric potential, and the Navier-Stokes equation for the diffusioosmotic flow. Hydrodynamic slip is applied as the boundary condition at the surface of nanochannels. As the slip length increases, the diffusioosmotic flow velocity and electrical conductance of ions increase because the friction at the surface of nanochannels decreases. It is shown that the power generation is enhanced by 44% with a moderate 100nm slip length by using a nanochannel with 10nm height.展开更多
A theoretical investigation concerning the influence of slip velocity on the flow of blood through an artery having its wall permeable has been carried out. Here blood is treated as a homogeneous Newtonian fluid. The ...A theoretical investigation concerning the influence of slip velocity on the flow of blood through an artery having its wall permeable has been carried out. Here blood is treated as a homogeneous Newtonian fluid. The flow is characterized by three parameters: /3 the ratio of radius to length of the arterial segment, Re the characteristic Reynolds number associated with the pressure outside the arterial segment and c the filtration coe^cient. The problem has been solved by the use of a perturbation technique, e is considered to be very small, ensuring the validity of the perturbation method. The computed numerical results are presented graphically to depict the variations in velocity, volumetric flow rate, wall shear stress and flow resistance.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51074197 and 50674111)the Natural Science Foundation of CQ CSTC (No. 2010BB6118)the Fundamental Research Funds for the Central Universities (No. CDJXS11241181)
文摘The similarities and differences in seepage flow evolution laws of CH4 and CO2 during complete stress- strain process of samples were comparatively analyzed. The results show that the seepage flow evolution laws of CH4 and CO2 are extremely similar during the stress-strain process, showing that the character- istic first decreased and then increased. A mathematical model was also established according to the rela- tionship of seepage velocity and axial strain. However, due to the strong adsorption ability of CO2, the coal samples generated a more serious ''Klinkenberg effect'' under the condition of CO2. Owing to this, the CO2 seepage flow resulted into occurrence of ''stagnation'' phenomenon during the late linear elastic stage II. In the strain consolidation stage III, the increment rate of CH4 seepage velocity was significantly greater than that of CO2. In the stress descent stage IV, when the axial load reached the peak pressure of coal, the increment rates of CH4 seepage velocity presented a turning point. But the changing rate of CO2 seepage velocity still remained slow and a turning point was presented at one time after the peak of thestrain pressure, which showed an obvious feature of hysteresis.
基金Projects(91330106,11171190)supported by the National Natural Science Foundation of ChinaProjects(15CX05065A,15CX05003A)supported by the Fundamental Research Funds for the Central Universities,China
文摘Coalbed gas non-Darcy flow has been observed in high permeable fracture systems,and some mathematical and numerical models have been proposed to study the effects of non-Darcy flow using Forchheimer non-Darcy model.However,experimental results show that the assumption of a constant Forchheimer factor may cause some limitations in using Forchheimer model to describe non-Darcy flow in porous media.In order to investigate the effects of non-Darcy flow on coalbed methane production,this work presents a more general coalbed gas non-Darcy flow model according to Barree-Conway equation,which could describe the entire range of relationships between flow velocity and pressure gradient from low to high flow velocity.An expanded mixed finite element method is introduced to solve the coalbed gas non-Darcy flow model,in which the gas pressure and velocity can be approximated simultaneously.Error estimate results indicate that pressure and velocity could achieve first-order convergence rate.Non-Darcy simulation results indicate that the non-Darcy effect is significant in the zone near the wellbore,and with the distance from the wellbore increasing,the non-Darcy effect becomes weak gradually.From simulation results,we have also found that the non-Darcy effect is more significant at a lower bottom-hole pressure,and the gas production from non-Darcy flow is lower than the production from Darcy flow under the same permeable condition.
文摘Activities by various authors on aerodynamics and control dynamics of rotating stall in axial compressor are first traced. Then, a process of stall cell evolution in a subsonic stage is discussed based on a 2-D CFD. A few numbers of vortices grow ahead of the rotor accumulating vorticity ejected from lightly stalled blades, and eventually organize a cell of circumferentially aligned huge vortices, which merge and recess repeatedly during the rotation. Such stall disturbance is intensified on trailing side of a circumferential inlet distortion and decays on the leading side. Considering these features, a new algorithm for stall warning is developed based on a correlation between pressure waveforms at each passing of a fixed blade. A remarkable change in the correlation level at near-stall provides a warning signal prior to the stall onset with sufficiently large time margin. This scheme is applied to achieve rotating stall prevention by actuating flaps installed on the hub. The last issue is on characteristics of forward swept blade which has much increased throttle margin with decreased tip loss. A 3-D computation shows that a secondary vortex generated in suction surface mid span interacts to reduce the tip leakage vortex that initiates the stall.
基金supported by Nano Material Technology Development Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (grant number:2011-0030285)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (grant number:2011-0026791, 2012-0003055)
文摘Power generation by reverse electrodialysis in ion-selective nanochannels is numerically investigated. Especially,in the present study, the influence of hydrodynamic slip at the surface of nanochannels is investigated. The current-potential characteristics of the nanochannels are calculated by solving several governing equations:Nernst-Planck equation for the ionic concentrations, the Poisson equation for the electric potential, and the Navier-Stokes equation for the diffusioosmotic flow. Hydrodynamic slip is applied as the boundary condition at the surface of nanochannels. As the slip length increases, the diffusioosmotic flow velocity and electrical conductance of ions increase because the friction at the surface of nanochannels decreases. It is shown that the power generation is enhanced by 44% with a moderate 100nm slip length by using a nanochannel with 10nm height.
文摘A theoretical investigation concerning the influence of slip velocity on the flow of blood through an artery having its wall permeable has been carried out. Here blood is treated as a homogeneous Newtonian fluid. The flow is characterized by three parameters: /3 the ratio of radius to length of the arterial segment, Re the characteristic Reynolds number associated with the pressure outside the arterial segment and c the filtration coe^cient. The problem has been solved by the use of a perturbation technique, e is considered to be very small, ensuring the validity of the perturbation method. The computed numerical results are presented graphically to depict the variations in velocity, volumetric flow rate, wall shear stress and flow resistance.