To enhance the oil and gas recovery rate, hydraulic fracturing techniques have been widely adopted for stimulation of low-permeability reservoirs. Pioneering work indicates that hydraulic perforation and layout could ...To enhance the oil and gas recovery rate, hydraulic fracturing techniques have been widely adopted for stimulation of low-permeability reservoirs. Pioneering work indicates that hydraulic perforation and layout could significantly affect fracture initiation and propagation in low-permeability reservoir rocks subjected to complex in-situ stresses. This paper reports on a novel numerical method that incorporates fracture mechanics principles and the numerical tools FRANC3D and ANSYS to investigate the three-dimensional initiation and propagation behavior of hydro-fracturing cracks in shale rock. Considering the transverse isotropic property of shale rocks, the mechanical parameters of reservoir rocks attained from laboratory tests were adopted in the simulation. The influence of perforation layouts on the 3D initiation of hydro-fracturing fractures in reservoir rocks under geo-stresses was quantitatively illuminated. The propagation and growth of fractures in three dimensions in different perforating azimuth values were illustrated. The results indicate that: 1) the optimal perforation direction should be parallel to the maximum horizontal principal stress, 2) the crack plane gradually turns toward the direction of the maximum horizontal principal stress when they are not in parallel, 3) compared with the linear and symmetric pattern, the staggered perforation is the optimal one, 4) the proper perforation density is four to six holes per meter, 5) the optimal perforation diameter in this model is 30 ram, and 6) the influence of the perforation depth on the fracture initiation pressure is low.展开更多
基金supported by the National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.51125017)the National Natural Science Foundation of China(Grant No.51374213)+2 种基金the Fund for Creative Research and Development Group Program of Jiangsu Province(2014)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51421003)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘To enhance the oil and gas recovery rate, hydraulic fracturing techniques have been widely adopted for stimulation of low-permeability reservoirs. Pioneering work indicates that hydraulic perforation and layout could significantly affect fracture initiation and propagation in low-permeability reservoir rocks subjected to complex in-situ stresses. This paper reports on a novel numerical method that incorporates fracture mechanics principles and the numerical tools FRANC3D and ANSYS to investigate the three-dimensional initiation and propagation behavior of hydro-fracturing cracks in shale rock. Considering the transverse isotropic property of shale rocks, the mechanical parameters of reservoir rocks attained from laboratory tests were adopted in the simulation. The influence of perforation layouts on the 3D initiation of hydro-fracturing fractures in reservoir rocks under geo-stresses was quantitatively illuminated. The propagation and growth of fractures in three dimensions in different perforating azimuth values were illustrated. The results indicate that: 1) the optimal perforation direction should be parallel to the maximum horizontal principal stress, 2) the crack plane gradually turns toward the direction of the maximum horizontal principal stress when they are not in parallel, 3) compared with the linear and symmetric pattern, the staggered perforation is the optimal one, 4) the proper perforation density is four to six holes per meter, 5) the optimal perforation diameter in this model is 30 ram, and 6) the influence of the perforation depth on the fracture initiation pressure is low.