Two finite element(FE) models were built up for analysis of stress field in the lining of aluminum electrolysis cells.Distribution of sodium concentration in cathode carbon blocks was calculated by one FE model of a c...Two finite element(FE) models were built up for analysis of stress field in the lining of aluminum electrolysis cells.Distribution of sodium concentration in cathode carbon blocks was calculated by one FE model of a cathode block.Thermal stress field was calculated by the other slice model of the cell at the end of the heating-up.Then stresses coupling thermal and sodium expansion were considered after 30 d start-up.The results indicate that sodium penetrates to the bottom of the cathode block after 30 d start-up.The semi-graphitic carbon block has the largest stress at the thermal stage.After 30 d start-up the anthracitic carbon has the greatest sodium expansion stress and the graphitized carbon has the lowest sodium expansion stress.Sodium penetration can cause larger deformation and stress in the cathode carbon block than thermal expansion.展开更多
Ultrasonic vibrations in coal lead to cavitation bubble oscillation, growth, shrinkage, and collapse, and the strong vibration of cavitation bubbles not only makes coal pores break and cracks propagate, but plays an i...Ultrasonic vibrations in coal lead to cavitation bubble oscillation, growth, shrinkage, and collapse, and the strong vibration of cavitation bubbles not only makes coal pores break and cracks propagate, but plays an important role in enhancing the permeability of coal. In this paper, the influence of ultrasonic cavitation on coal and the effects of the sonic waves on crack generation, propagation, connection, as well as the effect of cracks on the coal permeability, are studied. The experimental results show that cracks in coal are generated even connected rapidly after ultrasonic cavitation. Under the effect of ultrasonic cavitation,the permeability increases between 30% and 60%, and the number of cracks in coal also significantly increased. Numerical experiments show that the effective sound pressure is beneficial to fracture propagation and connection, and it is closely related to the permeability. Moreover, the numerical simulations and physical experiments provide a guide for the coal permeability improvement.展开更多
基金Project(50374081) supported by the National Natural Science Foundation of China
文摘Two finite element(FE) models were built up for analysis of stress field in the lining of aluminum electrolysis cells.Distribution of sodium concentration in cathode carbon blocks was calculated by one FE model of a cathode block.Thermal stress field was calculated by the other slice model of the cell at the end of the heating-up.Then stresses coupling thermal and sodium expansion were considered after 30 d start-up.The results indicate that sodium penetrates to the bottom of the cathode block after 30 d start-up.The semi-graphitic carbon block has the largest stress at the thermal stage.After 30 d start-up the anthracitic carbon has the greatest sodium expansion stress and the graphitized carbon has the lowest sodium expansion stress.Sodium penetration can cause larger deformation and stress in the cathode carbon block than thermal expansion.
基金supported by the National Natural Science Foundation of China (No. 51574114)the National Key Research and Development Program (No. 2016YFC0600901)
文摘Ultrasonic vibrations in coal lead to cavitation bubble oscillation, growth, shrinkage, and collapse, and the strong vibration of cavitation bubbles not only makes coal pores break and cracks propagate, but plays an important role in enhancing the permeability of coal. In this paper, the influence of ultrasonic cavitation on coal and the effects of the sonic waves on crack generation, propagation, connection, as well as the effect of cracks on the coal permeability, are studied. The experimental results show that cracks in coal are generated even connected rapidly after ultrasonic cavitation. Under the effect of ultrasonic cavitation,the permeability increases between 30% and 60%, and the number of cracks in coal also significantly increased. Numerical experiments show that the effective sound pressure is beneficial to fracture propagation and connection, and it is closely related to the permeability. Moreover, the numerical simulations and physical experiments provide a guide for the coal permeability improvement.