The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten fo...The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten formula and the parameters that characterized the prosperities of aeolian sand such as the unsaturated infiltration coefficient and specific water capacity were obtained.The results showed that the water characteristic curve for aeolian sand in wetting process had greater hysteresis quality than ...展开更多
To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental sy...To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental system, and the effects of different factors on coefficient of permeability were discussed. The results showed that the increasing confining pressure will gradually decrease the coefficient of permeability, and this process is divided into two stages: 1) the fast decrease stage, which corresponds to a confining pressure less than 30 kPa, and 2) the slow decrease stage, which corresponds to a confining pressure larger than 30 kPa. Unlike confining pressure, an increase in temperature will increase the coefficient of permeability. It is noted that fracture surface roughness will also affect the variation of coefficient of permeability to a certain extent. Among the three examined factors, the effect of confining pressure increases is dominant on fracture permeability coefficient. The relationship between the confining pressure and coefficient of permeability can be quantified by an exponential function.展开更多
A novel self-contained in situ sediment acoustic measurement system based on hydraulic driving penetration is proposed to solve the problem of large disturbances to sediments of the in situ equipments already in exist...A novel self-contained in situ sediment acoustic measurement system based on hydraulic driving penetration is proposed to solve the problem of large disturbances to sediments of the in situ equipments already in existence. By using a hydraulic driving device, the system drives four acoustic probes into sediments at an even speed, and this decreases disturbances to sediments introduced by the penetration of acoustic probes. By means of the special design of the central control unit, the system can work full-automatically and the data are stored self-containedly, and this avoids the requirement of real-time remote controlling from the ship. Its operating water depth, measuring depth and measuring frequency is 500m, 1.0m and 30kHz respectively. A set of in situ sound speeds and attenuation coefficients of sediments are obtained at 40 stations using the system. The results confirm that the data obtained by the in situ sediment acoustic system are accurate and credible.展开更多
The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indi...The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indirect method. Digital images of expansive soil of the surface fissure with different moisture contents were analyzed with the binarization statistic method. In addition, the fissure fractal dimension was computed with a self-compiled program. Combined with in situ seepage and loading plate tests, the relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus was initially established. The surface fissure ratio and moisture content show a linear relation, "y=-0.019 1x+1.028 5" for rufous expansive soil and "y=-0.07 1x+2.610 5" for grey expansive soil. Soil initial seepage coefficient and surface fissure ratio show a power function relation, "y=1× 10^-9exp(15.472x)" for rufous expansive soil and "y=5× 10^-7exp(4.209 6x)" for grey expansive soil. Grey expansive soil deformation modulus and surface fissure ratio show a power fimction relation of "y=3.935 7exp(0.993 6x)". Based on the binarization and fractal dimension methods, the results show that the surface fissure statistics can depict the fissure distribution in the view of two dimensions. And the evolvement behaviors of permeability and the deformation modulus can indirectly describe the developing state of the fissure. The analysis reflects that the engineering behaviors of unsaturated expansive soil are objectively influenced by fissure.展开更多
The effects of components and their ratio of grouts on anti-seepage capability of clay-solidified grouting curtain and its permeability of heavy metal cations were investigated by permeating experiments, using reactiv...The effects of components and their ratio of grouts on anti-seepage capability of clay-solidified grouting curtain and its permeability of heavy metal cations were investigated by permeating experiments, using reactive solute transport model to study the permeation of heavy metals (Cd2+, Pb2+ and Hg2+). The study of permeating for different mixture ratios of cement and clay indicates that hydraulic conductivity of clay-solidified grouting curtain with different ratios of solid to liquid or with the same ratio of solid to liquid but with different ratios of cement to clay is changed. The laboratory simulation test results also show that precipitates produced in heavy metal cation migration process in curtain block up water flowing passage which makes the hydraulic conductivity of the solution-permeated curtain decrease with the leakage time. The permeation velocities for different heavy metal cations vary with ionic concentration, exchange capacity and ion radius etc. The test results indicate that the permeation rapidity order of heavy metals cations in clay-solidified grouting curtain is Hg2+>Pb2+ in the same experimental circumstance. In addition, permeability for different mixture ratios and antisepsis capabilities of clay-solidified grouting curtain were studied in tests.展开更多
According to Cubic law and incompressible fluid law of mass conservation, the seepage character of the fracture surface was simulated with the simulation method of fractal theory and random Brown function. Furthermore...According to Cubic law and incompressible fluid law of mass conservation, the seepage character of the fracture surface was simulated with the simulation method of fractal theory and random Brown function. Furthermore, the permeability coefficient of the single fracture was obtained. In order to test the stability of the method, 500 simulations were conducted on each different fractal dimension. The simulated permeability coefficient was analyzed in probability density distribution and probability cumulative distribution statistics. Statistics showed that the discrete degree of the permeability coefficient increases with the increase of the fractal dimension. And the calculation result has better stability when the fractal dimension value is relatively small. According to the Bayes theory, the characteristic index of the permeability coefficient on fractal dimension P(Dfi| Ri) is established. The index, P(Dfi| Ri), shows that when the simulated permeability coefficient is relatively large, it can clearly represent the fractal dimension of the structure surface, the probability is 82%. The calculated results of the characteristic index verify the feasibility of the method.展开更多
Membrane-based separation processes are new technology combined membrane separation with conventional separation. Hydrophobic porous membranes are often used in these processes. The structure of hydrophobic porous mem...Membrane-based separation processes are new technology combined membrane separation with conventional separation. Hydrophobic porous membranes are often used in these processes. The structure of hydrophobic porous membrane has significant effect on mass transfer process. The permeabilities of five kinds of gas, He, N2, O2, CO2 and water vapor, across six polytetrafluoroethylene(PTFE) flat membranes were tested experimentally. Results indicated that the greater the membrane mean pore size and the wider the pore size distribution are, the higher the gas permeability. A gas permeation model, including the effects of membrane structure parameter and gas properties, was established. A comprehensive characteristic parameter (including porosity, thickness and tortuosity) was found more effective to express the influence of membrane structure in gas permeation process. The predicted permeation coefficients were in good agreement with experimental data.展开更多
This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressur...This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded methane-containing coal has been studied under the conditions of different confining pressures and pore pressures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam.展开更多
The main purpose of the present study was to provide a practical, convenient drillability prediction model based on rock mass characteristics, geological sampling from blast holes, and drill operational factors. Empir...The main purpose of the present study was to provide a practical, convenient drillability prediction model based on rock mass characteristics, geological sampling from blast holes, and drill operational factors. Empirical equations that predict drill penetration rate have been developed using statistical analyses of data from the Sarcheshmeh Copper Mine. Seven parameters of the rock or rock mass, including uniaxial compressive strength (UCS) of the rock, Schmidt hammer hardness value, quartz content, fragment size (dso), alteration, and joint dip, are included in the model along with two operational parameters of the rotary drill, bit rotational speed and thrust. These parameters were used to predict values of the newly developed Specific Rock Mass Drillability (SRMD) index. Comparing measured SRMD values to those pre- dicted by the multi-parameter linear, or nonlinear, regression models showed good agreement. The cor- relation coefficients were 0.82 and 0.81. resoectively.展开更多
Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three ...Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples. Three methods of confidence interval in describing permeability coefficients are presented: the secure interval, the calculated interval and the systemic interval. The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity. For the calculated interval, as the axial pressure increases, the length of confidence interval is shortened and the upper and lower bounds are reduced. For the systemic interval, the length of its confidence interval, as well as the upper and lower bounds, clearly vary under low axial pressure but are fairly similar under high axial pressure. These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.展开更多
The improved granular mixtures are widely used as the fillings of railway 8ubgrade, and in order to investigate the effect of coarse grain content on granular mixtures, a series of field tests were conducted. The expe...The improved granular mixtures are widely used as the fillings of railway 8ubgrade, and in order to investigate the effect of coarse grain content on granular mixtures, a series of field tests were conducted. The experimental results indicate that the permeability coefficient increases significantly with the increment of granite gravel content, especially in the range of 60%-70%. Thcrc exists a coarse grain content limit defined as 53%-58.5% to reform the permeable granular skeleton. Beyond this limit, the permeable granular skeleton is efficiently formed, and the macro pores between the separate gravels are partially filled, which is the explanation lbr the permeability increase. The investigations indicate the subgrade resistance modulus (ks0, Ev2, and Evd) depends on the granite gravel content, and the resistance modulus increases significantly beyond granite gravel content of 50%. The skeletons of granitc gravel clayey sand mixture change in the long-term deformation objected to the train-induced dynamic load, which involves three main repeated and circular deformation stages. Generally, the long-time deformation is explained as the gravel crushing and filling the internal porous space with crushed gravel fragments. Through these investigations, the C40-G60 or C30-G70 is recommended as an optimum soil mixture for the good permeability and high resistance modulus.展开更多
A series of researches were carried out for the soil samples in the Pearl River Delta under the action of consolidation loads,such as the quantitative analyses of the pore scale,shape and size distributions of micro-s...A series of researches were carried out for the soil samples in the Pearl River Delta under the action of consolidation loads,such as the quantitative analyses of the pore scale,shape and size distributions of micro-structure units,with an environmental scanning electron microscope (ESEM),a mercury intrusion analyzer and a mineral diffractometer. The experimental results show that the consolidation pressures remarkably change the pore sizes and distribution characteristics of the silt,thus changing its compressibility and permeability. This can be proved by the fact that,in the earlier stage with a consolidation pressure of p<200 kPa,the pore sizes are greater and the compressibility and permeability coefficients are larger. However,they rapidly decrease with the increase in consolidation pressure. And in the later stage with a consolidation pressure of p>200 kPa,the pore sizes are smaller and the compressibility and permeability coefficients are less. Therefore,the empirical formulas of compression coefficient and permeability coefficient vs consolidation load and average pore diameter are deduced.展开更多
A nonlinear flow reservoir mathematical model was established based on the flow characteristic of low-permeability reservoir.The well-grid equations were deduced and the dimensionless permeability coefficient was intr...A nonlinear flow reservoir mathematical model was established based on the flow characteristic of low-permeability reservoir.The well-grid equations were deduced and the dimensionless permeability coefficient was introduced to describe the permeability variation of nonlinear flow.The nonlinear flow numerical simulation program was compiled based on black-oil model.A quarter of five-spot well unit was simulated to study the effect of nonlinear flow on the exploitation of low-permeability reservoir.The comprehensive comparison and analysis of the simulation results of Darcy flow,quasi-linear flow and nonlinear flow were provided.The dimensionless permeability coefficient distribution was gained to describe the nonlinear flow degree.The result shows that compared with the results of Darcy flow,when considering nonlinear flow,the oil production is low,and production decline is rapid.The fluid flow in reservoir consumes more driving energy,which reduces the water flooding efficiency.Darcy flow model overstates the reservoir flow capability,and quasi-linear flow model overstates the reservoir flow resistance.The flow ability of the formation near the well and artificial fracture is strong while the flow ability of the formation far away from the main streamline is weak.The nonlinear flow area is much larger than that of quasi-linear flow during the fluid flow in low-permeability reservoir.The water propelling speed of nonlinear flow is greatly slower than that of Darcy flow in the vertical direction of artificial fracture,and the nonlinear flow should be taken into account in the well pattern arrangement of low-permeability reservoir.展开更多
By using the steady-state seepage method, a patent seepage device together with the MTS815.02 Rock Mechanics Test System is used to test the seepage properties of non-Darcy flow in a granular gangue with five differen...By using the steady-state seepage method, a patent seepage device together with the MTS815.02 Rock Mechanics Test System is used to test the seepage properties of non-Darcy flow in a granular gangue with five different grain sizes during the compaction. The experimental results show that the seepage properties are not only related to the stress or displacement level, but also to the grain size, the pore structure of the granular gangue, and the current porosity The permeability and the non-Darcy flow coefficient can be fitted respectively by the cubic polynomials and the power functions of the porosity, Formally, the flow in granular gangue satisfies the Forchheimer's binomial flow, but under the great axial and confining pressure and owing to the grain's crushing, the flow in granular gangues is different from that in rock-fills which are naturallv oiled un. As a result, the non-Darer flow coefficient may be negative.展开更多
Ore dumps are heterogeneous bodies with anisotropic seepage characteristics because of the ore segregation. In an indoor experiment,a dump was constructed with three strata,where the horizontal and vertical seepage ex...Ore dumps are heterogeneous bodies with anisotropic seepage characteristics because of the ore segregation. In an indoor experiment,a dump was constructed with three strata,where the horizontal and vertical seepage experi-ments were carried out. Horizontals flow are regarded as phreatic plan flows without penetration. Its seepage law sati-fies the Dupuit equation. With parallel lay seepage model,the equivalent seepage coefficient in the horizontal flow was obtained and was equivalent to the weighted mean of the seepage coefficient of each stratum. An unsaturated flow ap-peared in the vertical experiment,with a hydraulic gradient of 1. The vertical flow was equivalent to the seepage model that moved in vertical bedding; its equivalent seepage coefficient depended on the stratum with the minimum seepage coefficient. That the experiment showed clear anisotropy in a heterogeneous body was obvious with an anisotropic co-efficient between 63 and 155,which is 25 to 100 times larger than that of a homogeneous body.展开更多
The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the ...The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the SWCC, there is still no combined constitutive model that can simulate soil characteristics accurately. In cases when hydraulic hysteresis is dominant (e.g. under cyclic loading) it is particularly important to use the SWCC. In the past decades, several mathematical expressions have been proposed to model the curve. There are various influences on the SWCC as a source of information, so the curves obtained from conventional tests often cannot be directly applied; and the mathematical expressions from one scenario cannot be used to simulate another situation. The effects of void ratio, initial water content, stress state and high suction were studied in this work revealing that water content and stress state are more important than the other effects; but that the influences tend to decrease when suction increases. The van Genuchten model was modified to simulate better the changes in the degree of saturation at low values of suction. Predictions were compared with experimental results to determine the simulation capability of the model.展开更多
This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of ...This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of cohesionless and fully saturated sand with anisotropic permeability along the vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure acting on the retaining walls, increasing the probability of instability. In this paper, an analytical solution to the Laplace differential governing equation is presented for seepage problems considering anisotropic permeability based on Fourier series expansion method. A good correlation is observed between this and the seepage forces along a planar surface generated via finite element analysis. The active earth pressure is calculated using Coulomb's earth pressure theory based on the calculated pore water pressures. The obtained solutions can be degenerated into Coulomb's formula when no seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in seepage flow on the distribution of active earth pressure behind the wall is conducted by varying ratios of permeability coefficients in the vertical and horizontal directions,showing that anisotropic seepage flow has a prominent impact on active earth pressure distribution. Other factors such as effective internal friction angle of soils and soil/wall friction conditions are also considered.展开更多
基金Supported by Key Project of Science and Technology Research of Ministry of Education(308021)Chang Jiang Scholars Innovation Team of Ministry of Education(IRT0811)Geological Survey Project of China Geological Survey(1212010331302)~~
文摘The water characteristic curve for aeolian sand in two processes of wetting and drying was obtained by the negative water column technique.The values of fitting parameters were calculated according to Van Genuchten formula and the parameters that characterized the prosperities of aeolian sand such as the unsaturated infiltration coefficient and specific water capacity were obtained.The results showed that the water characteristic curve for aeolian sand in wetting process had greater hysteresis quality than ...
基金Projects(51838001, 51878070, 51908073, 51908069) supported by the National Natural Science Foundation of ChinaProject(2019SK2171) supported by the Key Research and Development Program of Hunan Province, China+2 种基金Project(kq1905043) supported by the Training Program for Excellent Young Innovators of Changsha, ChinaProject(2019IC04) supported by Double First-class Scientific Research International Cooperation Expansion Project of Changsha University of Science & Technology, ChinaProject(CX20200811) supported by Postgraduate Research and Innovation Key Project of Hunan Province, China。
文摘To investigate the influence of confining pressures and temperatures on the seepage characteristics of fractured rocks, seepage tests were conducted on a fractured silty mudstone using a self-developed experimental system, and the effects of different factors on coefficient of permeability were discussed. The results showed that the increasing confining pressure will gradually decrease the coefficient of permeability, and this process is divided into two stages: 1) the fast decrease stage, which corresponds to a confining pressure less than 30 kPa, and 2) the slow decrease stage, which corresponds to a confining pressure larger than 30 kPa. Unlike confining pressure, an increase in temperature will increase the coefficient of permeability. It is noted that fracture surface roughness will also affect the variation of coefficient of permeability to a certain extent. Among the three examined factors, the effect of confining pressure increases is dominant on fracture permeability coefficient. The relationship between the confining pressure and coefficient of permeability can be quantified by an exponential function.
文摘A novel self-contained in situ sediment acoustic measurement system based on hydraulic driving penetration is proposed to solve the problem of large disturbances to sediments of the in situ equipments already in existence. By using a hydraulic driving device, the system drives four acoustic probes into sediments at an even speed, and this decreases disturbances to sediments introduced by the penetration of acoustic probes. By means of the special design of the central control unit, the system can work full-automatically and the data are stored self-containedly, and this avoids the requirement of real-time remote controlling from the ship. Its operating water depth, measuring depth and measuring frequency is 500m, 1.0m and 30kHz respectively. A set of in situ sound speeds and attenuation coefficients of sediments are obtained at 40 stations using the system. The results confirm that the data obtained by the in situ sediment acoustic system are accurate and credible.
基金Projects(41102229,51109208)supported by the National Natural Science Foundation of ChinaProject(2011CDB407)supported by Natural Science Foundation of Hubei Province,ChinaProject supported by Qing Lan Project of Jiangsu Province,China
文摘The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indirect method. Digital images of expansive soil of the surface fissure with different moisture contents were analyzed with the binarization statistic method. In addition, the fissure fractal dimension was computed with a self-compiled program. Combined with in situ seepage and loading plate tests, the relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus was initially established. The surface fissure ratio and moisture content show a linear relation, "y=-0.019 1x+1.028 5" for rufous expansive soil and "y=-0.07 1x+2.610 5" for grey expansive soil. Soil initial seepage coefficient and surface fissure ratio show a power function relation, "y=1× 10^-9exp(15.472x)" for rufous expansive soil and "y=5× 10^-7exp(4.209 6x)" for grey expansive soil. Grey expansive soil deformation modulus and surface fissure ratio show a power fimction relation of "y=3.935 7exp(0.993 6x)". Based on the binarization and fractal dimension methods, the results show that the surface fissure statistics can depict the fissure distribution in the view of two dimensions. And the evolvement behaviors of permeability and the deformation modulus can indirectly describe the developing state of the fissure. The analysis reflects that the engineering behaviors of unsaturated expansive soil are objectively influenced by fissure.
文摘The effects of components and their ratio of grouts on anti-seepage capability of clay-solidified grouting curtain and its permeability of heavy metal cations were investigated by permeating experiments, using reactive solute transport model to study the permeation of heavy metals (Cd2+, Pb2+ and Hg2+). The study of permeating for different mixture ratios of cement and clay indicates that hydraulic conductivity of clay-solidified grouting curtain with different ratios of solid to liquid or with the same ratio of solid to liquid but with different ratios of cement to clay is changed. The laboratory simulation test results also show that precipitates produced in heavy metal cation migration process in curtain block up water flowing passage which makes the hydraulic conductivity of the solution-permeated curtain decrease with the leakage time. The permeation velocities for different heavy metal cations vary with ionic concentration, exchange capacity and ion radius etc. The test results indicate that the permeation rapidity order of heavy metals cations in clay-solidified grouting curtain is Hg2+>Pb2+ in the same experimental circumstance. In addition, permeability for different mixture ratios and antisepsis capabilities of clay-solidified grouting curtain were studied in tests.
基金Project(50934006) supported by the National Natural Science Foundation of ChinaProject(CX2012B070) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(1343-76140000024) Supported by Academic New Artist Ministry of Education Doctoral Post Graduate in 2012,China
文摘According to Cubic law and incompressible fluid law of mass conservation, the seepage character of the fracture surface was simulated with the simulation method of fractal theory and random Brown function. Furthermore, the permeability coefficient of the single fracture was obtained. In order to test the stability of the method, 500 simulations were conducted on each different fractal dimension. The simulated permeability coefficient was analyzed in probability density distribution and probability cumulative distribution statistics. Statistics showed that the discrete degree of the permeability coefficient increases with the increase of the fractal dimension. And the calculation result has better stability when the fractal dimension value is relatively small. According to the Bayes theory, the characteristic index of the permeability coefficient on fractal dimension P(Dfi| Ri) is established. The index, P(Dfi| Ri), shows that when the simulated permeability coefficient is relatively large, it can clearly represent the fractal dimension of the structure surface, the probability is 82%. The calculated results of the characteristic index verify the feasibility of the method.
基金Supported by the 863 Hi-Tech. Research and Development Program of China (No. 2002AA649280, No. 2002AA304030),National Natural Science Foundation of China (No. 20206002), Beijing NOVA program (H013610250112), University Doctor Science Foundation of China
文摘Membrane-based separation processes are new technology combined membrane separation with conventional separation. Hydrophobic porous membranes are often used in these processes. The structure of hydrophobic porous membrane has significant effect on mass transfer process. The permeabilities of five kinds of gas, He, N2, O2, CO2 and water vapor, across six polytetrafluoroethylene(PTFE) flat membranes were tested experimentally. Results indicated that the greater the membrane mean pore size and the wider the pore size distribution are, the higher the gas permeability. A gas permeation model, including the effects of membrane structure parameter and gas properties, was established. A comprehensive characteristic parameter (including porosity, thickness and tortuosity) was found more effective to express the influence of membrane structure in gas permeation process. The predicted permeation coefficients were in good agreement with experimental data.
基金supported by the National Basic Research Program of China (No. 2012CB723103)the Ministry of Education Innovation Team of China (No. IRT1235)+2 种基金the State Key Laboratory Cultivation Base for Gas Geology and Gas Control of Henan Polytechnic University of China (No. WS2012A01)the Provincial Open Laboratory Fund of Minal Materials Key disciplines of China (No. MEM13-10)China Postdoctoral Science Foundation (No. 2014M552003)
文摘This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded methane-containing coal has been studied under the conditions of different confining pressures and pore pressures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam.
文摘The main purpose of the present study was to provide a practical, convenient drillability prediction model based on rock mass characteristics, geological sampling from blast holes, and drill operational factors. Empirical equations that predict drill penetration rate have been developed using statistical analyses of data from the Sarcheshmeh Copper Mine. Seven parameters of the rock or rock mass, including uniaxial compressive strength (UCS) of the rock, Schmidt hammer hardness value, quartz content, fragment size (dso), alteration, and joint dip, are included in the model along with two operational parameters of the rotary drill, bit rotational speed and thrust. These parameters were used to predict values of the newly developed Specific Rock Mass Drillability (SRMD) index. Comparing measured SRMD values to those pre- dicted by the multi-parameter linear, or nonlinear, regression models showed good agreement. The cor- relation coefficients were 0.82 and 0.81. resoectively.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 50774083 and 41074040)the Program for New Century Excellent Talents in University (No. NCET-07-0803)the National Key Basic Research Program (No. 2009CB219605)
文摘Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples. Three methods of confidence interval in describing permeability coefficients are presented: the secure interval, the calculated interval and the systemic interval. The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity. For the calculated interval, as the axial pressure increases, the length of confidence interval is shortened and the upper and lower bounds are reduced. For the systemic interval, the length of its confidence interval, as well as the upper and lower bounds, clearly vary under low axial pressure but are fairly similar under high axial pressure. These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.
基金Project(51378514)supported by the National Natural Science Foundation of China
文摘The improved granular mixtures are widely used as the fillings of railway 8ubgrade, and in order to investigate the effect of coarse grain content on granular mixtures, a series of field tests were conducted. The experimental results indicate that the permeability coefficient increases significantly with the increment of granite gravel content, especially in the range of 60%-70%. Thcrc exists a coarse grain content limit defined as 53%-58.5% to reform the permeable granular skeleton. Beyond this limit, the permeable granular skeleton is efficiently formed, and the macro pores between the separate gravels are partially filled, which is the explanation lbr the permeability increase. The investigations indicate the subgrade resistance modulus (ks0, Ev2, and Evd) depends on the granite gravel content, and the resistance modulus increases significantly beyond granite gravel content of 50%. The skeletons of granitc gravel clayey sand mixture change in the long-term deformation objected to the train-induced dynamic load, which involves three main repeated and circular deformation stages. Generally, the long-time deformation is explained as the gravel crushing and filling the internal porous space with crushed gravel fragments. Through these investigations, the C40-G60 or C30-G70 is recommended as an optimum soil mixture for the good permeability and high resistance modulus.
基金Project(2008ZA11) supported by State Key Laboratory of Subtropical Building Science in South China University of Technology, ChinaProject(20080430815) supported by China Postdoctoral Science Foundation
文摘A series of researches were carried out for the soil samples in the Pearl River Delta under the action of consolidation loads,such as the quantitative analyses of the pore scale,shape and size distributions of micro-structure units,with an environmental scanning electron microscope (ESEM),a mercury intrusion analyzer and a mineral diffractometer. The experimental results show that the consolidation pressures remarkably change the pore sizes and distribution characteristics of the silt,thus changing its compressibility and permeability. This can be proved by the fact that,in the earlier stage with a consolidation pressure of p<200 kPa,the pore sizes are greater and the compressibility and permeability coefficients are larger. However,they rapidly decrease with the increase in consolidation pressure. And in the later stage with a consolidation pressure of p>200 kPa,the pore sizes are smaller and the compressibility and permeability coefficients are less. Therefore,the empirical formulas of compression coefficient and permeability coefficient vs consolidation load and average pore diameter are deduced.
基金Project(10672187) supported by the National Natural Science Foundation of ChinaProject(2008ZX05000-013-02) supported by the National Science and Technology Major Program of China
文摘A nonlinear flow reservoir mathematical model was established based on the flow characteristic of low-permeability reservoir.The well-grid equations were deduced and the dimensionless permeability coefficient was introduced to describe the permeability variation of nonlinear flow.The nonlinear flow numerical simulation program was compiled based on black-oil model.A quarter of five-spot well unit was simulated to study the effect of nonlinear flow on the exploitation of low-permeability reservoir.The comprehensive comparison and analysis of the simulation results of Darcy flow,quasi-linear flow and nonlinear flow were provided.The dimensionless permeability coefficient distribution was gained to describe the nonlinear flow degree.The result shows that compared with the results of Darcy flow,when considering nonlinear flow,the oil production is low,and production decline is rapid.The fluid flow in reservoir consumes more driving energy,which reduces the water flooding efficiency.Darcy flow model overstates the reservoir flow capability,and quasi-linear flow model overstates the reservoir flow resistance.The flow ability of the formation near the well and artificial fracture is strong while the flow ability of the formation far away from the main streamline is weak.The nonlinear flow area is much larger than that of quasi-linear flow during the fluid flow in low-permeability reservoir.The water propelling speed of nonlinear flow is greatly slower than that of Darcy flow in the vertical direction of artificial fracture,and the nonlinear flow should be taken into account in the well pattern arrangement of low-permeability reservoir.
基金Projects 50225414 and 50574090 supported by National Natural Science Fund for Distinguished Young Scholars, and 105024 supported by the Key Projectof Educational Ministry
文摘By using the steady-state seepage method, a patent seepage device together with the MTS815.02 Rock Mechanics Test System is used to test the seepage properties of non-Darcy flow in a granular gangue with five different grain sizes during the compaction. The experimental results show that the seepage properties are not only related to the stress or displacement level, but also to the grain size, the pore structure of the granular gangue, and the current porosity The permeability and the non-Darcy flow coefficient can be fitted respectively by the cubic polynomials and the power functions of the porosity, Formally, the flow in granular gangue satisfies the Forchheimer's binomial flow, but under the great axial and confining pressure and owing to the grain's crushing, the flow in granular gangues is different from that in rock-fills which are naturallv oiled un. As a result, the non-Darer flow coefficient may be negative.
基金Projects 2004CB619205 supported by the National Basic Research and Development Program of China50321402 by the National Science Fund for Distingui- shed Young Scholars of China50574099 by the National Natural Science Foundation of China
文摘Ore dumps are heterogeneous bodies with anisotropic seepage characteristics because of the ore segregation. In an indoor experiment,a dump was constructed with three strata,where the horizontal and vertical seepage experi-ments were carried out. Horizontals flow are regarded as phreatic plan flows without penetration. Its seepage law sati-fies the Dupuit equation. With parallel lay seepage model,the equivalent seepage coefficient in the horizontal flow was obtained and was equivalent to the weighted mean of the seepage coefficient of each stratum. An unsaturated flow ap-peared in the vertical experiment,with a hydraulic gradient of 1. The vertical flow was equivalent to the seepage model that moved in vertical bedding; its equivalent seepage coefficient depended on the stratum with the minimum seepage coefficient. That the experiment showed clear anisotropy in a heterogeneous body was obvious with an anisotropic co-efficient between 63 and 155,which is 25 to 100 times larger than that of a homogeneous body.
基金Project (No. 22833012) supported by the China Scholarship Council
文摘The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the SWCC, there is still no combined constitutive model that can simulate soil characteristics accurately. In cases when hydraulic hysteresis is dominant (e.g. under cyclic loading) it is particularly important to use the SWCC. In the past decades, several mathematical expressions have been proposed to model the curve. There are various influences on the SWCC as a source of information, so the curves obtained from conventional tests often cannot be directly applied; and the mathematical expressions from one scenario cannot be used to simulate another situation. The effects of void ratio, initial water content, stress state and high suction were studied in this work revealing that water content and stress state are more important than the other effects; but that the influences tend to decrease when suction increases. The van Genuchten model was modified to simulate better the changes in the degree of saturation at low values of suction. Predictions were compared with experimental results to determine the simulation capability of the model.
基金supported by the National Key R & D program of China (Grant No. 2016YFC0800204)the National Key Basic Research Program of China (Grant No. 2015CB057801)Natural Science Foundation of China (Grant Nos. 51578499 & 51761130078)
文摘This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of cohesionless and fully saturated sand with anisotropic permeability along the vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure acting on the retaining walls, increasing the probability of instability. In this paper, an analytical solution to the Laplace differential governing equation is presented for seepage problems considering anisotropic permeability based on Fourier series expansion method. A good correlation is observed between this and the seepage forces along a planar surface generated via finite element analysis. The active earth pressure is calculated using Coulomb's earth pressure theory based on the calculated pore water pressures. The obtained solutions can be degenerated into Coulomb's formula when no seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in seepage flow on the distribution of active earth pressure behind the wall is conducted by varying ratios of permeability coefficients in the vertical and horizontal directions,showing that anisotropic seepage flow has a prominent impact on active earth pressure distribution. Other factors such as effective internal friction angle of soils and soil/wall friction conditions are also considered.