Energy recovery device (ERD) is an important part of the seawater reverse osmosis (SWRO) desalination system. There are principally two kinds of ERDs, the centrifugal type and the positive displacement (PD) type...Energy recovery device (ERD) is an important part of the seawater reverse osmosis (SWRO) desalination system. There are principally two kinds of ERDs, the centrifugal type and the positive displacement (PD) type. The PD type is of extensive concern and is preferred in large-scale plants. In this article, an innovative fluid switcher was presented and a two-cylinder hydraulic energy recovery unit with a lab-scale fluid switcher was set up. Tap water was used as the working medium instead of the actual seawater and brine in SWRO desalination plants. Under steady state operating conditions, the experimental results were obtained on the variations of the pressure and flow rate to and from the energy recovery unit. The hydraulic recovery efficiency (En) of the energy recovery unit with the fluid switcher reached up to 76.83%.展开更多
A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-C...A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.展开更多
Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three ...Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples. Three methods of confidence interval in describing permeability coefficients are presented: the secure interval, the calculated interval and the systemic interval. The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity. For the calculated interval, as the axial pressure increases, the length of confidence interval is shortened and the upper and lower bounds are reduced. For the systemic interval, the length of its confidence interval, as well as the upper and lower bounds, clearly vary under low axial pressure but are fairly similar under high axial pressure. These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.展开更多
In this study, we investigated the essential role of feed solution pH so as to gain insights into the transport mechanisms of succinic acid concentration by osmotically-driven forward osmosis (FO) process. FO perfor...In this study, we investigated the essential role of feed solution pH so as to gain insights into the transport mechanisms of succinic acid concentration by osmotically-driven forward osmosis (FO) process. FO performances including water flux and bidirectional transport of succinate and chloride anions were systematically examined using cellulose triacetate-based FO membrane. Additionally, real seawater was explored as draw solution. Experimental results revealed that the pH-dependent speciation of succinic acid can affect the FO performances. Ionization of succinic acid at higher solution pH enhanced the osmotic pressure of feed solution, thus leading to lower water flux performance. A strong effect was pointed out on the succinate rejection for which nearly 100% rejections were achieved at pH above its pKa2 value. The rejection of succinate increased in the following order of chemical form: C2H4C2O4H2 〈 C2H4C2OH- 〈 C2H4C2O24-. With real seawater as the draw solution, low to moderate water fluxes (〈4 L. m- 2. h- 1 ) were observed. The divalent succinate anion was highly retained in the feed side despite differences in the succinic acid feed concentration at pH of approximately 6.90.展开更多
This study investigated the influence of temperature on the performance of forward osmosis(FO) under the condition that the feed solution(FS) temperature was diff erent from draw solution(DS) temperature. An FO model ...This study investigated the influence of temperature on the performance of forward osmosis(FO) under the condition that the feed solution(FS) temperature was diff erent from draw solution(DS) temperature. An FO model considering the mass and heat transfer between FS and DS was developed, and the FO experiment with ammonium bicarbonate solution as DS and sodium chloride solution as FS was carried out. The predicted water flux and reverse draw solute flux using the developed model coincided with the experimental fluxes. Increases in the temperature of FS or DS yield corresponding increases in the water flux, reverse draw solute flux, and forward rejection of feed solute. Compared with increasing the FS temperature, increasing the DS temperature has a more significant impact on enhancing FO performance. When the temperature of DS increased from 20 to 40 ℃, the specific reverse solute flux decreased from 0.231 to 0.190 mol/L.展开更多
Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied throug...Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.展开更多
During the construction of the south caisson anchorage of Taizhou Bridge, the drainage area is located in the lower reaches of the Yangtze River and the permeability of stratums there is considerable. In order to main...During the construction of the south caisson anchorage of Taizhou Bridge, the drainage area is located in the lower reaches of the Yangtze River and the permeability of stratums there is considerable. In order to maintain progress and guarantee safety during the sinking of the caisson, water should be drained in the initial period. Subsequently, detailed information about the aquifer permeability is required to make sure that the drainage will proceed successfully, which consequently necessitates the on-site estimation of the aquifer permeability in the drainage area. Therefore, the traditional pumping test and slug test are implemented respectively on site. The comparison of computational results of these two tests indicates that they are consistent overall. Notwithstanding, as slug test can be conducted with portable facilities in a short time and the manipulation is easy and few people need to be involved, the advantages of slug test is conspicuous compared with the traditional pumping test. It could be speculated that slug test will gain a prevalent application in the measurement of aquifer permeability in the future.展开更多
基金the Seawater Desalination Research Programs of Tianjin(043185211-4)
文摘Energy recovery device (ERD) is an important part of the seawater reverse osmosis (SWRO) desalination system. There are principally two kinds of ERDs, the centrifugal type and the positive displacement (PD) type. The PD type is of extensive concern and is preferred in large-scale plants. In this article, an innovative fluid switcher was presented and a two-cylinder hydraulic energy recovery unit with a lab-scale fluid switcher was set up. Tap water was used as the working medium instead of the actual seawater and brine in SWRO desalination plants. Under steady state operating conditions, the experimental results were obtained on the variations of the pressure and flow rate to and from the energy recovery unit. The hydraulic recovery efficiency (En) of the energy recovery unit with the fluid switcher reached up to 76.83%.
基金Project(2013CB228005) supported by the National Program on Key Fundamental Research Project of ChinaProject(14ZB0047) supported by the Department of Education of Sichuan Province,China
文摘A novel method was developed to establish a realistic three dimensional(3D) network model representing pore space in low permeability sandstone.Digital core of rock sample was established by the combination of micro-CT scanning and image processing,then 3D pore-throat network model was extracted from the digital core through analyzing pore space topology,calculating pore-throat parameters and simplifying the shapes of pores and throats.The good agreements between predicted and measured porosity and absolute permeability verified the validity of this new network model.Gas-water flow mechanism was studied by using pore-scale simulations,and the influence of pore structure parameters,including coordination number,aspect ratio and shape factor,on gas-water flow,was investigated.The present simulation results show that with the increment of coordination number,gas flow ability in network improves and the effect of invading water on blocking gas flow weakens.The smaller the aspect ratio is,the stronger the anisotropy of the network is,resulting in the increase of seepage resistance.It is found that the shape factor mainly affects the end points in relative permeability curves,and for a highly irregular pore or throat with a small shape factor,the irreducible water saturation(Swi) and residual gas saturation(Sgr) are relatively high.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 50774083 and 41074040)the Program for New Century Excellent Talents in University (No. NCET-07-0803)the National Key Basic Research Program (No. 2009CB219605)
文摘Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples. Three methods of confidence interval in describing permeability coefficients are presented: the secure interval, the calculated interval and the systemic interval. The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity. For the calculated interval, as the axial pressure increases, the length of confidence interval is shortened and the upper and lower bounds are reduced. For the systemic interval, the length of its confidence interval, as well as the upper and lower bounds, clearly vary under low axial pressure but are fairly similar under high axial pressure. These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.
基金the financial support for this work provided by the LRGS/2013/UKM-UKM/PT/03 grant from the Ministry of Education Malaysia
文摘In this study, we investigated the essential role of feed solution pH so as to gain insights into the transport mechanisms of succinic acid concentration by osmotically-driven forward osmosis (FO) process. FO performances including water flux and bidirectional transport of succinate and chloride anions were systematically examined using cellulose triacetate-based FO membrane. Additionally, real seawater was explored as draw solution. Experimental results revealed that the pH-dependent speciation of succinic acid can affect the FO performances. Ionization of succinic acid at higher solution pH enhanced the osmotic pressure of feed solution, thus leading to lower water flux performance. A strong effect was pointed out on the succinate rejection for which nearly 100% rejections were achieved at pH above its pKa2 value. The rejection of succinate increased in the following order of chemical form: C2H4C2O4H2 〈 C2H4C2OH- 〈 C2H4C2O24-. With real seawater as the draw solution, low to moderate water fluxes (〈4 L. m- 2. h- 1 ) were observed. The divalent succinate anion was highly retained in the feed side despite differences in the succinic acid feed concentration at pH of approximately 6.90.
基金supported by The National Key Research and Development Program of China(No.2016YFC0401202)
文摘This study investigated the influence of temperature on the performance of forward osmosis(FO) under the condition that the feed solution(FS) temperature was diff erent from draw solution(DS) temperature. An FO model considering the mass and heat transfer between FS and DS was developed, and the FO experiment with ammonium bicarbonate solution as DS and sodium chloride solution as FS was carried out. The predicted water flux and reverse draw solute flux using the developed model coincided with the experimental fluxes. Increases in the temperature of FS or DS yield corresponding increases in the water flux, reverse draw solute flux, and forward rejection of feed solute. Compared with increasing the FS temperature, increasing the DS temperature has a more significant impact on enhancing FO performance. When the temperature of DS increased from 20 to 40 ℃, the specific reverse solute flux decreased from 0.231 to 0.190 mol/L.
基金Supported by the National Natural Science Foundation of China(50604019)the Innovation Team Foundation of China(50621403)
文摘Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.
基金Special Fund of"333"High Level Talent Training Project of Jiangsu ProvinceNational Scienceand Technology Support Program of China ( No. 2009BAG15B02) Key Programs for Science and Technology De-velopment of Chinese Transportation Industry( No. 2008-353-332-150)
文摘During the construction of the south caisson anchorage of Taizhou Bridge, the drainage area is located in the lower reaches of the Yangtze River and the permeability of stratums there is considerable. In order to maintain progress and guarantee safety during the sinking of the caisson, water should be drained in the initial period. Subsequently, detailed information about the aquifer permeability is required to make sure that the drainage will proceed successfully, which consequently necessitates the on-site estimation of the aquifer permeability in the drainage area. Therefore, the traditional pumping test and slug test are implemented respectively on site. The comparison of computational results of these two tests indicates that they are consistent overall. Notwithstanding, as slug test can be conducted with portable facilities in a short time and the manipulation is easy and few people need to be involved, the advantages of slug test is conspicuous compared with the traditional pumping test. It could be speculated that slug test will gain a prevalent application in the measurement of aquifer permeability in the future.