期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
超细颗粒W—Cu的粉末注模及渗透烧结
1
作者 Yang.,B Gemm.,RM 《钨钼材料》 1998年第2期1-8,共8页
关键词 钨粉 铜粉 粉末注模 渗透烧结 超细粉末
下载PDF
Design and characterization of Ti6Al4V/20CoCrMo−highly porous Ti6Al4V biomedical bilayer processed by powder metallurgy 被引量:6
2
作者 E.MIHALCEA H.J.VERGARA-HERNÁNDEZ +3 位作者 O.JIMENEZ L.OLMOS J.CHÁVEZ D.ARTEAGA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期178-192,共15页
The aim of this work was to develop a Ti6Al4V/20CoCrMo−highly porous Ti6Al4V bilayer for biomedical applications.Conventional powder metallurgy technique,with semi-solid state sintering as consolidation step,was emplo... The aim of this work was to develop a Ti6Al4V/20CoCrMo−highly porous Ti6Al4V bilayer for biomedical applications.Conventional powder metallurgy technique,with semi-solid state sintering as consolidation step,was employed to fabricate samples with a compact top layer and a porous bottom layer to better mimic natural bone.The densification behavior of the bilayer specimen was studied by dilatometry and the resulting microstructure was observed by scan electron microscopy(SEM)and computed microtomography(CMT),while the mechanical properties and corrosion resistance were evaluated by compression and potentiodynamic tests,respectively.The results indicate that bilayer samples without cracks were obtained at the interface which has no negative impact on the densification.Permeability values of the highly porous layer were in the lower range of those of human bones.The compression behavior is dictated by the highly porous Ti6Al4V layer.Additionally,the corrosion resistance of Ti6Al4V/20CoCrMo is better than that of Ti6Al4V,which improves the performance of the bilayer sample.This work provides an insight into the important aspects of a bilayer fabrication by powder metallurgy and properties of Ti6Al4V/20CoCrMo−highly porous Ti6Al4V structure,which can potentially benefit the production of customized implants with improved wear performance and increased in vivo lifetime. 展开更多
关键词 bilayer structure composites POROSITY sintering permeability compression behavior corrosion
下载PDF
Reactive spontaneous infiltration of Al-activated TiO_2 by molten aluminum 被引量:1
3
作者 Abdollah SABOORI Xiang CHEN +2 位作者 Claudio BADINI Paolo FINO Matteo PAVESE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期657-666,共10页
The reactive spontaneous infiltration of Al-activated TiO2 (anatase) was investigated. Pure Al powder was blended with TiO2 for activation. They were compacted into the preform and then sealed within 6060 alloy mould.... The reactive spontaneous infiltration of Al-activated TiO2 (anatase) was investigated. Pure Al powder was blended with TiO2 for activation. They were compacted into the preform and then sealed within 6060 alloy mould. The activation and infiltration were carried out in 6060 alloy bath for 1 h and comparative sintering experiments were carried out in an argon protected environment under the same conditions of temperature and duration. X-ray diffraction analysis proved that the Al sealed environment was superior to the argon protection on activating the reaction between Al and TiO2. The blending ratio of TiO2 to Al and the temperature were found to play the most important role in infiltration by affecting infiltration and reaction kinetics. Three main types of microstructures were observed after infiltration: full infiltration, partial infiltration with the formation of cracks and no infiltration. The formation of these microstructures was explained on the basis of reaction kinetics and local volume changes due to the reactions. Ultimately, it is found that to obtain an overall good spontaneous infiltration, a TiO2 to Al blending ratio around 3:7 in volume and an infiltration temperature around 900 °C are the most suitable. 展开更多
关键词 spontaneous infiltration pressureless sintering TiO2-Al reaction infiltration kinetics in-situ fabrication
下载PDF
Protonic and Electronic Conductivities and Hydrogen Permeation of SrCe0.95-xZrxTm0.05O3-δ(0≤x≤0.40) Membrane 被引量:2
4
作者 梁杰 毛玲玲 +1 位作者 李莉 袁文辉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第3期506-510,共5页
Zr-substituted,Tm-doped SrCeO3(SrCe0.95-xZrxTm0.05O3-δ,0≤x≤0.40)were synthesized via citrate complexing method,and the membranes of SrCe0.95-xZrxTm0.05O3-δwere prepared by pressing followed by sintering. X-ray d... Zr-substituted,Tm-doped SrCeO3(SrCe0.95-xZrxTm0.05O3-δ,0≤x≤0.40)were synthesized via citrate complexing method,and the membranes of SrCe0.95-xZrxTm0.05O3-δwere prepared by pressing followed by sintering. X-ray diffraction(XRD)was used to characterize the phase structure of sintered membrane.The microstructure of the sintered membranes was studied by scanning electron microscopy(SEM).Protonic and electronic conductivities were measured under different circumstance.Hydrogen permeation through the SrCe0.75Zr0.20Tm0.05O3-δmembranes was carried out using gas permeation setup.Hydrogen permeation fluxes( 2H J)of the SrCe0.75Zr0.20Tm0.05O3-δ membrane reach up to 0.042 ml·min^ -1 ·cm^-2 at H 2 partial pressure of 0.4×10 ^5 Pa at 900°C.The hydrogen permea- tion fluxes( 2H J)obtained in this paper are slightly lower than that of SrCe0.95Tm0.05O3-δon the same orders,and Zr doping can increase chemical stability of the SrCe0.75Zr0.20Tm0.05O3-δmembranes. 展开更多
关键词 zirconium dopant mixed conductivity hydrogen permeation PEROVSKITE
下载PDF
Influence of porogen type and copper powder morphology on property of sintering copper porous materials 被引量:6
5
作者 LIU Ru-tie CHEN Jie XIONG Xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2143-2149,共7页
Copper porous materials have been manufactured by the method of powder metallurgy.Electrolytic copper powders and atomized copper powders are used as matrix material.Methylcellulose and paraffin are used as porogen.Th... Copper porous materials have been manufactured by the method of powder metallurgy.Electrolytic copper powders and atomized copper powders are used as matrix material.Methylcellulose and paraffin are used as porogen.The influence of porogen type and copper powder morphology on the property of copper porous materials is investigated as well.The results show that copper porous materials with paraffin as porogen have lower porosity and permeability compared with materials using methylcellulose as porogen,due to the different pore-forming mechanisms.The pore forming mechanism of methylcellulose is thermal decomposition,while the pore forming mechanism of paraffin is melting–evaporation.The morphology of copper powders affects the contact state between adjacent powders,which further influence the sintering shrinkage.The porous materials using arborescent copper powders as matrix have lower porosity,smaller pore size and lower permeability,compared with materials with atomized copper powders as matrix. 展开更多
关键词 copper porous materials sintered neck POROSITY PERMEABILITY
下载PDF
Preparation of high-permeability NiCuZn ferrite
6
作者 胡军 严密 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第6期580-583,共4页
Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic proper... Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10?6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. 展开更多
关键词 NiZn ferrite Low temperature High permeability Low loss
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部