Modeling of seismic responses of variable permeability on the basis of the patchy-sa^ration model provides insights into the seismic characterization of fluid mobility. We linked rock-physics models in the frequency d...Modeling of seismic responses of variable permeability on the basis of the patchy-sa^ration model provides insights into the seismic characterization of fluid mobility. We linked rock-physics models in the frequency domain and seismic modeling on the basis of the propagator matrix method. For a layered patchy-saturated reservoir, the seismic responses represent a combination of factors, including impedance contrast, the effect of dispersion and attenuation within the reservoir, and the tuning and interference of reflections at the top and bottom of the reservoir. Numerical results suggest that increasing permeability significantly reduces the P-wave velocity and induces dispersion between the high- and low-frequency elastic limit. Velocity dispersion and the layered structure of a reservoir lead to complex reflection waveforms. Seismic reflections are sensitive to permeability if the impedance of the reservoir is close to that of the surroundings. For variable layer thickness, the stacked amplitudes increase with permeability for high-velocity surrounding shale, whereas the stacked amplitudes decrease with permeability for low-velocity surrounding shale.展开更多
To balance inventory cost with diverse demand,an optimal investment decision on necessary process improvement for delayed product differentiation is studied. A two-stage flexible manufacturing system is modeled as a c...To balance inventory cost with diverse demand,an optimal investment decision on necessary process improvement for delayed product differentiation is studied. A two-stage flexible manufacturing system is modeled as a continuous time Markov chain. The first production stage manufactures semifinished products based on a make-to-stock policy. The second production stage customizes semi-finished products from the first production stage on a make-to-order policy. Various performance measures for this flexible manufacturing system are evaluated by using matrix geometric methods. An optimization model to determine the level of investment on process improvement that minimizes the manufacturer ’s total cost is established. The results show that,a higher investment level can reduce both the expected customer order fulfillment delay and the expected semi-finished products inventory. When the initial order penetration point is 0. 4,the manufacturer ’s total cost is reduced by 15. 89% through process investment. In addition, the optimal investment level increases with the increase in the unit time cost of customer order fulfillment delay,and decreases with the increase in the product value and the initial order penetration point.展开更多
基金sponsored by the National Natural Science Foundation of China(Nos 41404090 and U1262208)the Foundation of the SINOPEC Key Laboratory of Geophysics(No.33550006-14-FW2099-0029)
文摘Modeling of seismic responses of variable permeability on the basis of the patchy-sa^ration model provides insights into the seismic characterization of fluid mobility. We linked rock-physics models in the frequency domain and seismic modeling on the basis of the propagator matrix method. For a layered patchy-saturated reservoir, the seismic responses represent a combination of factors, including impedance contrast, the effect of dispersion and attenuation within the reservoir, and the tuning and interference of reflections at the top and bottom of the reservoir. Numerical results suggest that increasing permeability significantly reduces the P-wave velocity and induces dispersion between the high- and low-frequency elastic limit. Velocity dispersion and the layered structure of a reservoir lead to complex reflection waveforms. Seismic reflections are sensitive to permeability if the impedance of the reservoir is close to that of the surroundings. For variable layer thickness, the stacked amplitudes increase with permeability for high-velocity surrounding shale, whereas the stacked amplitudes decrease with permeability for low-velocity surrounding shale.
基金The National Natural Science Foundation of China(No.71661147004)
文摘To balance inventory cost with diverse demand,an optimal investment decision on necessary process improvement for delayed product differentiation is studied. A two-stage flexible manufacturing system is modeled as a continuous time Markov chain. The first production stage manufactures semifinished products based on a make-to-stock policy. The second production stage customizes semi-finished products from the first production stage on a make-to-order policy. Various performance measures for this flexible manufacturing system are evaluated by using matrix geometric methods. An optimization model to determine the level of investment on process improvement that minimizes the manufacturer ’s total cost is established. The results show that,a higher investment level can reduce both the expected customer order fulfillment delay and the expected semi-finished products inventory. When the initial order penetration point is 0. 4,the manufacturer ’s total cost is reduced by 15. 89% through process investment. In addition, the optimal investment level increases with the increase in the unit time cost of customer order fulfillment delay,and decreases with the increase in the product value and the initial order penetration point.