Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacemen...Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacement of ground fine quartz sand with natural fine aggregate.The effect of steel fiber volume fraction and curing ages on the static mechanical behaviour ofECO-RPC was studied. Using the split Hopkinson pressure bar technique, the dynamic mechanicalbehaviour of ECO-RPC was investigated under different strain rates. The results show that the staticmechanical behaviour of ECO-RPC increases with the increase of steel fiber volume fraction andcuring ages. The type of ECO-RPC with the substitution of 25% ultra-fine slag, 25% ultra-fine flyash and 10% silica fume is better than the others with compressive strength, flexural strength, andfracture energy more than 200 MPa, 60 MPa and 30 kJ/m^2, respectively. ECO-RPC has excellent strainrate stiffening effects under dynamic load. Its peak stress, peak strain and the area understrain-stress curve increase with the increase of strain rate. Its fracture pattern changes frombrittleness to toughness under high strain rates.展开更多
Workability and mechanical properties of steel slag green concrete with different types of steel slag and different dosages of admixtures were investigated. The effectiveness of steel slag powder on suppressing alkali...Workability and mechanical properties of steel slag green concrete with different types of steel slag and different dosages of admixtures were investigated. The effectiveness of steel slag powder on suppressing alkali aggregate reaction(AAR) expansion was assessed using the method of ASTM C441 and accelerated test method. Experimental results show that mechanical properties can be improved further due to the synergistic effect and mutual activation when compound mineral admixtures with steel slag powder and blast-furnace slag powder are mixed into concrete. In addition,about 50% decrease in expansion rate of mortar bars with mineral admixtures can be achieved in AAR tests. Mineral admixtures with steel slag powder as partial replacement for Portland cement in concrete is an effective means for controlling expansion due to AAR.展开更多
In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatm...In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatment.The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods.Two methods of Al dross recycling which could utilize Al dross efficiently were presented.High-quality aluminum-silicon alloys and brown fused alumina(BFA) were produced successfully by recycling Al dross.Then,life cycle assessment(LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process.The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%.As the LCA results indicate,they have some advantages such as less natural resource consumption and pollutant emissions,which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.展开更多
Mine waste and process tailings storage is one of important challenge for which mining operations are increasingly confronted. Treatment discharges of plants and main part of waste rock development are generally store...Mine waste and process tailings storage is one of important challenge for which mining operations are increasingly confronted. Treatment discharges of plants and main part of waste rock development are generally stored on surface areas. The volume and chemical characteristics of these materials generate serious problem for required storage spaces and mainly environmental degradation. Paste backfill(PBF) is one of ingenious solutions to minimize the quantity of tailings to store. PBF is basically defined as a combination of mine processing tailings, binder, and water mixing. The purpose of this paper is to present backfilling components characterization and formula verification for a waste valorization solution through paste backfilling technology in Imiter operation. Obtained results and realized analysis demonstrate PBF conformity and adequacy with assigned underground functions. However the studied recipe can be more ameliorated to obtain an optimal mixture ensuring the required mechanical strength.展开更多
Furfural residue, an industrial waste, is a kind of strongly acidic organic materials. Its comprehensive utilization in agriculture showed a significant effect on control of soil alkalization, amelioration of solonetz...Furfural residue, an industrial waste, is a kind of strongly acidic organic materials. Its comprehensive utilization in agriculture showed a significant effect on control of soil alkalization, amelioration of solonetz and increase of crop yields. In detail it may adjust pH, depress alkalinity, reduce bulk density and compactness and increase water permeability and retention ability of the soil. Meanwhile agricultural use of furfural residue provided an effective way to avoid its pollution of the soil, Water and air.展开更多
Microbial, vegetal or animal organic matter, which has potential to be transformed into energy, is considered biomass. Among the various alternative energy sources, biomass is the only one with the possibility of gene...Microbial, vegetal or animal organic matter, which has potential to be transformed into energy, is considered biomass. Among the various alternative energy sources, biomass is the only one with the possibility of generating a class of substances of interest for fine chemistry (ketones, aldehydes, alcohols, phenols, etc.). From biomass, it is possible to produce bio-oil using pyrolysis, a thermodegradation process. The quality of the bio-oil depends on the process conditions (pyrolysis temperature, heating temperature, etc.) and biomass used. In this paper, the pyrolysis (using a fixed bed reactor) of three biomasses (coconut fiber, coffee grounds and sugar cane straw) is studied. The results indicated that the bio-oil yields for all biomass were similar, approximately 37%. The chemical profile obtained by gas chromatography coupled with mass spectrometry (GC/qMS) showed high amounts of fatty acids in the coffee grounds bio-oil and aliphatic and aromatic hydrocarbons in coconut fiber bio-oil, whereas guaiacols were the predominant components of the sugar cane straw bio-oil.展开更多
In this present work, the best conditions for production of peptidases under solid state fermentation by the fungi Penicillium corylophilum and Penicillium waksmanii, partial purification using Sephadex G-75 gel filtr...In this present work, the best conditions for production of peptidases under solid state fermentation by the fungi Penicillium corylophilum and Penicillium waksmanii, partial purification using Sephadex G-75 gel filtration column, as well as the biochemical characterization of the partial purified enzymes were investigated. P. corylophilum showed the best production in medium containing wheat bran, agro-industrial residue, without additives (egg albumin or casein), in which peptidase activity reached 520 U mL^-1 and the enzyme displayed the optimum activity between pH range from 7 to 8 and 60 ℃. It also showed high stability in wide pH range and temperature until 45 ℃ for 60 min of incubation. On the other hand, P. waksmanii, the best production was noted in a medium containing wheat bran (95%) and casein (5%), reaching 545 U mL^-1, with proteolytic optimum activity at pH 7.5 and 55 ℃. The enzyme was mainly stable in pH range from 8 to 9 and at temperatures until 45 ℃ for 60 rain of incubation. The peptidases secreted by both fungi were inhibited in the presence of phenylmethane sulfonyl fluoride, showing that they belong to the subclass of serine peptidases.展开更多
The SHIFT-G technology of inverse catalyst loading is used to optimize the catalyst grading in the residue hydrotreating unit. The results, taken from pilot tests and commercial units, have showed that the optimized c...The SHIFT-G technology of inverse catalyst loading is used to optimize the catalyst grading in the residue hydrotreating unit. The results, taken from pilot tests and commercial units, have showed that the optimized catalyst grading system can reasonably distribute the reaction load, effectively improve the prop- erties of hydrotreated products, prolong the operating cycle and promote economic benefits.展开更多
The paper analyzes the influence of lead toxicity by anaerobic granule sludge inhibition and recovering experiments. The result shows that there are different inhibition types at differ-ent lead contents. Higher lead ...The paper analyzes the influence of lead toxicity by anaerobic granule sludge inhibition and recovering experiments. The result shows that there are different inhibition types at differ-ent lead contents. Higher lead content leads to more inhibition granular sludge, and at the same time, the time of gas recovery is different. Lower lead content per microorganism results in sooner sludge recovery. Microorganisms have a good ability to resist lead toxicity.展开更多
Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and ap...Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and application requirements, the third-generation series catalysts for residue hydrotreating have been developed by Research Institute of Petroleum Processing, SINOPEC. The new series RHT catalysts possess higher activity for HDS, HDM and HDCCR performance as well as longer run length. The commercial results for application of these catalysts have demonstrated that the new catalyst system performs better than the reference ones.展开更多
Significant quantities of slag are generated as waste material or by-product every day from steel industries. They usually contain considerable quantities of valuable metals and materials. Transforming these solid was...Significant quantities of slag are generated as waste material or by-product every day from steel industries. They usually contain considerable quantities of valuable metals and materials. Transforming these solid wastes from one form to another to be reused either by the same production unit or by different industrial installation is very much essential not only for conserving metals and mineral resources but also for protecting the environment. The sustainable development concept requires a more efficient management of waste materials and preservation of environment. The paper presents the basic characteristics of slag, analyses and it's modification by incorporating some essential plant nutrients and the possibility of its application as fertilizer was studied.展开更多
Currently in China,no technically and economically viable methods exist to handle large quantities of Camptotheca acuminata Decne residue(CA residue) after camptothecin extract while there is a great demand for low co...Currently in China,no technically and economically viable methods exist to handle large quantities of Camptotheca acuminata Decne residue(CA residue) after camptothecin extract while there is a great demand for low cost alternatives to replace the cottonseed hull-based materials used in commercial mushroom culture.Hence,it is of importance for camptothecin extract factories and mushroom producers to explore the utilization of CA residue in mushroom industry.We conducted a research to study how partially or completely substituting traditional mushroom substrate by CA residue would influence the mycelial growth in mushroom spawn production.5 mushroom strains from 4 species were used in the test,i.e.,oyster mushroom(Pleurotus ostreatu) strains,Zayou No.1 and Xide 33,needle mushroom(Flammulina velutipes) strain Chuanjin No.3,hairy wood ear(Auricularia polytricha) strain Huang Er No.10,and shiitake(Lentinula edodes) strain Wuxiang.The nutrient element composition and heavy metal contents of CA residue were determined to ensure its safety and to determine its appropriate component in the substrate formulation for mushroom spawn production.The four substrate formulations(one control-CK,and three treatments,named,T1,T2,T3,) contained 0%,40%,79%,and 100% CA residue,respectively,to allow comparison of the fungal mycelial growth.The control(CK) was the popularly used formulation in Chinese commercial mushroom production,comprising of 73% cottonseed hulls,10% sawdust,15% wheat bran,1% lime,1% white sugar(percentage by weight).All mushroom spawns of the five strains in the four treatments were incubated under the same conditions.The results showed that mycelia of the five mushroom strains grew significantly faster on the substrates containing CA residue than on the substrate with no CA residue(CK).There were no significant differences in the mycelial growth rate among treatments containing CA residue for the two oyster mushrooms and the needle mushroom,but mycelial growth rate in treatments T2 and T3 was significantly higher than in treatment T1 for hairy wood ear and shiitake.The results suggest that CA residue can be used to culture oyster mushroom,needle mushroom,hairy wood ear,and shiitake spawn,and the medium containing CA residue can stimulate their mycelial growth.The commercial production of mushroom spawn using CA residue not only brings better economical benefits including lower cost to mushroom producers,but also reduces environmental pollution by providing a means to reduce dumping and piling of CA residue.展开更多
The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch ...The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch mode slurry phase with different catalyst samples. The results showed that the catalyst acidity had a good effect on residue conversion and MCR(micro carbon residue) conversion but brought about higher coke yield. Residue conversion was thermally induced but the catalyst acidity changed its conversion route. A catalyst with higher metal loading, higher hydrogenation activity and appropriate pore size had higher sulfur and metal removal rate, higher MCR conversion and also a lower coke formation. The activity of spent commercial catalyst AS1 and DS1 was slightly lower than the corresponding fresh ones but was still high enough for residue oil hydroconversion. It assumes that the role of the catalyst is to activate hydrogen species toward reaction with an aromatic carbon radical to yield a cyclohexadienyl type intermediate which will turn into liquid and also to absorb the mesophase which can easily aggregate to form coke.展开更多
文摘Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacement of ground fine quartz sand with natural fine aggregate.The effect of steel fiber volume fraction and curing ages on the static mechanical behaviour ofECO-RPC was studied. Using the split Hopkinson pressure bar technique, the dynamic mechanicalbehaviour of ECO-RPC was investigated under different strain rates. The results show that the staticmechanical behaviour of ECO-RPC increases with the increase of steel fiber volume fraction andcuring ages. The type of ECO-RPC with the substitution of 25% ultra-fine slag, 25% ultra-fine flyash and 10% silica fume is better than the others with compressive strength, flexural strength, andfracture energy more than 200 MPa, 60 MPa and 30 kJ/m^2, respectively. ECO-RPC has excellent strainrate stiffening effects under dynamic load. Its peak stress, peak strain and the area understrain-stress curve increase with the increase of strain rate. Its fracture pattern changes frombrittleness to toughness under high strain rates.
基金Project(2006BAF02A00) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of ChinaProject(08-2-1-18-nsh) supported by the Science and Technology Program of Qingdao City, China
文摘Workability and mechanical properties of steel slag green concrete with different types of steel slag and different dosages of admixtures were investigated. The effectiveness of steel slag powder on suppressing alkali aggregate reaction(AAR) expansion was assessed using the method of ASTM C441 and accelerated test method. Experimental results show that mechanical properties can be improved further due to the synergistic effect and mutual activation when compound mineral admixtures with steel slag powder and blast-furnace slag powder are mixed into concrete. In addition,about 50% decrease in expansion rate of mortar bars with mineral admixtures can be achieved in AAR tests. Mineral admixtures with steel slag powder as partial replacement for Portland cement in concrete is an effective means for controlling expansion due to AAR.
基金Project(07dz12028) supported by the Science Program of Science and Technology Commission of Shanghai Municipality,China
文摘In 2008,around 596 000 t of aluminum dross was generated from secondary aluminum industry in China;however,it was not sufficiently recycled yet.Approximately 95% of the Al dross was land filled without innocent treatment.The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods.Two methods of Al dross recycling which could utilize Al dross efficiently were presented.High-quality aluminum-silicon alloys and brown fused alumina(BFA) were produced successfully by recycling Al dross.Then,life cycle assessment(LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process.The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%.As the LCA results indicate,they have some advantages such as less natural resource consumption and pollutant emissions,which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.
文摘Mine waste and process tailings storage is one of important challenge for which mining operations are increasingly confronted. Treatment discharges of plants and main part of waste rock development are generally stored on surface areas. The volume and chemical characteristics of these materials generate serious problem for required storage spaces and mainly environmental degradation. Paste backfill(PBF) is one of ingenious solutions to minimize the quantity of tailings to store. PBF is basically defined as a combination of mine processing tailings, binder, and water mixing. The purpose of this paper is to present backfilling components characterization and formula verification for a waste valorization solution through paste backfilling technology in Imiter operation. Obtained results and realized analysis demonstrate PBF conformity and adequacy with assigned underground functions. However the studied recipe can be more ameliorated to obtain an optimal mixture ensuring the required mechanical strength.
文摘Furfural residue, an industrial waste, is a kind of strongly acidic organic materials. Its comprehensive utilization in agriculture showed a significant effect on control of soil alkalization, amelioration of solonetz and increase of crop yields. In detail it may adjust pH, depress alkalinity, reduce bulk density and compactness and increase water permeability and retention ability of the soil. Meanwhile agricultural use of furfural residue provided an effective way to avoid its pollution of the soil, Water and air.
文摘Microbial, vegetal or animal organic matter, which has potential to be transformed into energy, is considered biomass. Among the various alternative energy sources, biomass is the only one with the possibility of generating a class of substances of interest for fine chemistry (ketones, aldehydes, alcohols, phenols, etc.). From biomass, it is possible to produce bio-oil using pyrolysis, a thermodegradation process. The quality of the bio-oil depends on the process conditions (pyrolysis temperature, heating temperature, etc.) and biomass used. In this paper, the pyrolysis (using a fixed bed reactor) of three biomasses (coconut fiber, coffee grounds and sugar cane straw) is studied. The results indicated that the bio-oil yields for all biomass were similar, approximately 37%. The chemical profile obtained by gas chromatography coupled with mass spectrometry (GC/qMS) showed high amounts of fatty acids in the coffee grounds bio-oil and aliphatic and aromatic hydrocarbons in coconut fiber bio-oil, whereas guaiacols were the predominant components of the sugar cane straw bio-oil.
文摘In this present work, the best conditions for production of peptidases under solid state fermentation by the fungi Penicillium corylophilum and Penicillium waksmanii, partial purification using Sephadex G-75 gel filtration column, as well as the biochemical characterization of the partial purified enzymes were investigated. P. corylophilum showed the best production in medium containing wheat bran, agro-industrial residue, without additives (egg albumin or casein), in which peptidase activity reached 520 U mL^-1 and the enzyme displayed the optimum activity between pH range from 7 to 8 and 60 ℃. It also showed high stability in wide pH range and temperature until 45 ℃ for 60 min of incubation. On the other hand, P. waksmanii, the best production was noted in a medium containing wheat bran (95%) and casein (5%), reaching 545 U mL^-1, with proteolytic optimum activity at pH 7.5 and 55 ℃. The enzyme was mainly stable in pH range from 8 to 9 and at temperatures until 45 ℃ for 60 rain of incubation. The peptidases secreted by both fungi were inhibited in the presence of phenylmethane sulfonyl fluoride, showing that they belong to the subclass of serine peptidases.
文摘The SHIFT-G technology of inverse catalyst loading is used to optimize the catalyst grading in the residue hydrotreating unit. The results, taken from pilot tests and commercial units, have showed that the optimized catalyst grading system can reasonably distribute the reaction load, effectively improve the prop- erties of hydrotreated products, prolong the operating cycle and promote economic benefits.
基金Supported by The national natural Science Foundation of China (Grant No.50172009).
文摘The paper analyzes the influence of lead toxicity by anaerobic granule sludge inhibition and recovering experiments. The result shows that there are different inhibition types at differ-ent lead contents. Higher lead content leads to more inhibition granular sludge, and at the same time, the time of gas recovery is different. Lower lead content per microorganism results in sooner sludge recovery. Microorganisms have a good ability to resist lead toxicity.
文摘Based on the mechanism of resid hydrotreating reaction by coordinating the catalyst activity and stability, the diffusion mechanism and catalyst reactivity, the cost and catalyst performance, and the production and application requirements, the third-generation series catalysts for residue hydrotreating have been developed by Research Institute of Petroleum Processing, SINOPEC. The new series RHT catalysts possess higher activity for HDS, HDM and HDCCR performance as well as longer run length. The commercial results for application of these catalysts have demonstrated that the new catalyst system performs better than the reference ones.
文摘Significant quantities of slag are generated as waste material or by-product every day from steel industries. They usually contain considerable quantities of valuable metals and materials. Transforming these solid wastes from one form to another to be reused either by the same production unit or by different industrial installation is very much essential not only for conserving metals and mineral resources but also for protecting the environment. The sustainable development concept requires a more efficient management of waste materials and preservation of environment. The paper presents the basic characteristics of slag, analyses and it's modification by incorporating some essential plant nutrients and the possibility of its application as fertilizer was studied.
基金funded by theCrop Breeding Key Project of Sichuan Province(Grant No. 2006YZGG 26)
文摘Currently in China,no technically and economically viable methods exist to handle large quantities of Camptotheca acuminata Decne residue(CA residue) after camptothecin extract while there is a great demand for low cost alternatives to replace the cottonseed hull-based materials used in commercial mushroom culture.Hence,it is of importance for camptothecin extract factories and mushroom producers to explore the utilization of CA residue in mushroom industry.We conducted a research to study how partially or completely substituting traditional mushroom substrate by CA residue would influence the mycelial growth in mushroom spawn production.5 mushroom strains from 4 species were used in the test,i.e.,oyster mushroom(Pleurotus ostreatu) strains,Zayou No.1 and Xide 33,needle mushroom(Flammulina velutipes) strain Chuanjin No.3,hairy wood ear(Auricularia polytricha) strain Huang Er No.10,and shiitake(Lentinula edodes) strain Wuxiang.The nutrient element composition and heavy metal contents of CA residue were determined to ensure its safety and to determine its appropriate component in the substrate formulation for mushroom spawn production.The four substrate formulations(one control-CK,and three treatments,named,T1,T2,T3,) contained 0%,40%,79%,and 100% CA residue,respectively,to allow comparison of the fungal mycelial growth.The control(CK) was the popularly used formulation in Chinese commercial mushroom production,comprising of 73% cottonseed hulls,10% sawdust,15% wheat bran,1% lime,1% white sugar(percentage by weight).All mushroom spawns of the five strains in the four treatments were incubated under the same conditions.The results showed that mycelia of the five mushroom strains grew significantly faster on the substrates containing CA residue than on the substrate with no CA residue(CK).There were no significant differences in the mycelial growth rate among treatments containing CA residue for the two oyster mushrooms and the needle mushroom,but mycelial growth rate in treatments T2 and T3 was significantly higher than in treatment T1 for hairy wood ear and shiitake.The results suggest that CA residue can be used to culture oyster mushroom,needle mushroom,hairy wood ear,and shiitake spawn,and the medium containing CA residue can stimulate their mycelial growth.The commercial production of mushroom spawn using CA residue not only brings better economical benefits including lower cost to mushroom producers,but also reduces environmental pollution by providing a means to reduce dumping and piling of CA residue.
文摘The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch mode slurry phase with different catalyst samples. The results showed that the catalyst acidity had a good effect on residue conversion and MCR(micro carbon residue) conversion but brought about higher coke yield. Residue conversion was thermally induced but the catalyst acidity changed its conversion route. A catalyst with higher metal loading, higher hydrogenation activity and appropriate pore size had higher sulfur and metal removal rate, higher MCR conversion and also a lower coke formation. The activity of spent commercial catalyst AS1 and DS1 was slightly lower than the corresponding fresh ones but was still high enough for residue oil hydroconversion. It assumes that the role of the catalyst is to activate hydrogen species toward reaction with an aromatic carbon radical to yield a cyclohexadienyl type intermediate which will turn into liquid and also to absorb the mesophase which can easily aggregate to form coke.