We analyzed the advertisement call of Paa spinosa at Yuliang Mountain,Lanxi,Zhejiang Province,in eastern China.Temporal and spectral call parameters were analyzed,along with call intensity.Calls comprised of three to ...We analyzed the advertisement call of Paa spinosa at Yuliang Mountain,Lanxi,Zhejiang Province,in eastern China.Temporal and spectral call parameters were analyzed,along with call intensity.Calls comprised of three to seven notes,the last of which had the longest duration.Three formants(harmonics)were clearly distinguishable from the audio spectrogram.The dominant frequency ranged from 411-1534 Hz,and was either the first or the second formant.The number of notes within a call was positively correlated to air temperature,so that calls contained more notes during the day.Also,the dominant frequency appeared to be lower at the highest temperature.展开更多
We investigate transport through a perfect quantum wire with a side-coupled quantum dot under an ac field. Time-averaged complex conductance is formulated by using the nonequilibrium Green function (NGF) method. We ...We investigate transport through a perfect quantum wire with a side-coupled quantum dot under an ac field. Time-averaged complex conductance is formulated by using the nonequilibrium Green function (NGF) method. We find that the electron-photon interaction together with the quantum interference of electron wave function can lead to anti-resonance in the conductance, which is then useful for tuning coherence and phases of electrons. Meanwhile, we study the temperature dependence of the conductance. Interestingly, a peak-structure can be developed at the Fano resonance levels with increasing temperatures.展开更多
Effects of vanadium on light olefins selectivity of FCC catalysts were investigated with vanadium having different oxidation numbers (hereinafter abbreviated as Oxnum). Molecular modeling studies showed that vanadiu...Effects of vanadium on light olefins selectivity of FCC catalysts were investigated with vanadium having different oxidation numbers (hereinafter abbreviated as Oxnum). Molecular modeling studies showed that vanadium with low Oxnum could affect the chemical conversion of large-size hydrocarbon molecules. However, the vanadium deposited on equilibrium catalyst bad high Oxnum because of the oxidation reaction taking place in the regenerator, so an activation method to reduce vanadium Oxnum named "selective activation" was introduced. It was proved by means of Electron Paramagnetic Resonance (EPR) and Temperature-Programmed Reduction (TPR) methods that the vanadium Oxnum was decreased, when the catalyst was activated. The molecular modeling studies are consistent well with the lab evaluation results. The light olefins selectivity of activated equilibrium catalysts was better than that achieved by the inactivated catalysts. Similar results were observed with the lab vanadium-contaminated catalyst. The light olefins selectivity of the catalyst was optimized when the vanadium Oxnum was close to 2 (VO).展开更多
Cracks easily generate in concrete at early age owing to the shrinkage deformation.CaO-based expansion agent(CEA)and superabsorbent polymers(SAP)have been extensively used for the mitigation of concrete shrinkage.The ...Cracks easily generate in concrete at early age owing to the shrinkage deformation.CaO-based expansion agent(CEA)and superabsorbent polymers(SAP)have been extensively used for the mitigation of concrete shrinkage.The macroscopic properties of concrete are highly determined by the microstructure.In this study,the influence of CEA and SAP addition on the pore structure evolution of cement paste under different curing temperatures was evaluated via low-field nuclear magnetic resonance spectroscopy.Test results indicated that,in cement paste,a higher CEA content led to a higher porosity and a larger most probable pore diameter(MPPD).Meanwhile,SAP addition increased the porosity and MPPD of CEA cement paste at early age but decreased them after 7 d,and a higher SAP content always brought a higher porosity and MPPD.Furthermore,the addition of SAP led to a lower porosity and MPPD of CEA cement paste than that of plain cement paste after 14 d.Moreover,the porosity and MPPD of CEA cement paste decreased first and subsequently increased as the curing temperature raised.展开更多
The effect of pyrolysis on the microstructure and moisture adsorption of lignite was investigated with low field nuclear magnetic resonance spectroscopy. Changes in oxygen-containing groups were analyzed by Fourier tr...The effect of pyrolysis on the microstructure and moisture adsorption of lignite was investigated with low field nuclear magnetic resonance spectroscopy. Changes in oxygen-containing groups were analyzed by Fourier transform infrared spectroscopy (FTIR), and H20 adsorption mechanism on the surface of lignite pyrolysis was inferred. Two major changes in the pore structure of lignite char were observed as temperature increased in 105-200 ℃ and 500-700 ℃. Pyrolysis temperature is a significant factor in removing carboxyl and phenolic hydroxyl from lignite. Variation of ether bond content can be divided into three stages; the content initially increased, then decreased, and finally increased. The equilibrium adsorption ratio, content of oxygen-containing groups, and variation of pore volume below 700° were closely correlated with each other. The amount of adsorbed water on char pyrolyzed at 700 ℃ increased. Moreover, the adsorption capacity of the lignite decreased, and the adsorption state changed.展开更多
The early-age thermal cracking easily generates and severely impairs the durability of concrete.The temperature rising inhibitor(TRI)was utilized to regulate the temperature evolution by controlling the cement hydrati...The early-age thermal cracking easily generates and severely impairs the durability of concrete.The temperature rising inhibitor(TRI)was utilized to regulate the temperature evolution by controlling the cement hydration process.This paper aimed to investigate the pore structure formation and hydration characteristics of cement paste containing TRI by low-field nuclear magnetic resonance.The experiment showed that the T_(2) peak of cement paste shifted from 7.32 ms to 0.23 ms regardless of TRI addition.But the pattern of pore structure formation was changed with TRI addition,that is,the pore structure formation was delayed,and the pore successively shifted to left in two parts.In addition,TRI addition significantly prolonged the duration of gel pore formation and greatly decreased the increase rate of gel water,which implied that TRI introduction hindered the growth of C-S-H,and subsequently decreased the hydration rates and delayed the main hydration peak.Meanwhile,TRI dissolved and diffused rapidly at 40℃,delaying the hydration of cement paste seriously.Moreover,TRI brought about the C-S-H nucleation homogeneous and the ion concentration uniform,which might reduce the localized curvature occurring on the sheet of C-S-H,and then decreased the T_(2) intensity of capillary water and gel water.展开更多
A new method for estimating the degree of [SiO4]4-polymerization of coal gangue is presented. The method uses the relative bridging oxygen number (RBO) based on nuclear magnetic resonance (NMR) techniques. X-ray diffr...A new method for estimating the degree of [SiO4]4-polymerization of coal gangue is presented. The method uses the relative bridging oxygen number (RBO) based on nuclear magnetic resonance (NMR) techniques. X-ray diffraction (XRD) and 29Si NMR techniques have been used to study phase transitions and silicate polymerization of coal gangue calcined at different temperatures or co-calcined. It has been found that phase transition of clay minerals causes silicate polymerization to change with temperature. In this study, cementing activity and RBO were determined to be inversely related. Generally, activated coal gangue with lower RBO had better cementitious activity.展开更多
A long period fiber grating (LPFG) fabricated upon the all-solid photonic bandgap fiber by CO2 laser irradiation was investigated, and its resonance wavelength was at 1335.76nm with a modulation depth of 15dB and a ...A long period fiber grating (LPFG) fabricated upon the all-solid photonic bandgap fiber by CO2 laser irradiation was investigated, and its resonance wavelength was at 1335.76nm with a modulation depth of 15dB and a 3-dB bandwidth of 2.6nm. We studied its strain, temperature, and index sensor characteristics, the strain sensitivity of 0.992 pm/m was obtained by using linear fit, and the relationship between the refractive index and wavelength obeyed the distribution of quadratic function. Also, we demonstrated its temperature response was relatively insensitive (21.51 pm/~C).展开更多
In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific exam...In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific examples have been considered: one is the example of bistable system, and the other is the example of metastable system. The explicit expressions of the mean-first passage time (MFPT) and signal-to-noise ratio (SNR) for both specific examples are obtained, respectively. Based on the numerical computations, we compare the quantum case with its classical counterpart. Our research results show that: (i) the quantum effect accelerates the escape of the Brownian particle in comparison with the classical result and (ii) the quantum effect enhances the SR in the SNR as a function of β for a bistable system (i.e., β = 1/kBT, kB is the Boltzmann constant and T is the temperature), while for a metastable system, the β amplifies the quantum effects, and the quantum effect weakens the SNR as a function of β.展开更多
The temperature characteristics of near infrared surface plasmon resonance (SPR) sensors with Kretschmann configuration are studied theoretically and experimentally. The experimental results match with the numerical...The temperature characteristics of near infrared surface plasmon resonance (SPR) sensors with Kretschmann configuration are studied theoretically and experimentally. The experimental results match with the numerical simulations in the temperature range from 10 ℃ to 40.℃. With the increase of temperature, the resonance angle for gas increases slightly, but that for aqueous solution decreases obviously. No matter the dielectric layer is gas or aqueous solution, the resonance peaks are both broadened.展开更多
基金supported by the Science Technology Commission of Zhejiang Province of China(No.2006C22031)
文摘We analyzed the advertisement call of Paa spinosa at Yuliang Mountain,Lanxi,Zhejiang Province,in eastern China.Temporal and spectral call parameters were analyzed,along with call intensity.Calls comprised of three to seven notes,the last of which had the longest duration.Three formants(harmonics)were clearly distinguishable from the audio spectrogram.The dominant frequency ranged from 411-1534 Hz,and was either the first or the second formant.The number of notes within a call was positively correlated to air temperature,so that calls contained more notes during the day.Also,the dominant frequency appeared to be lower at the highest temperature.
基金supported by National Natural Science Foundation of China under Grant No.60671042the Fundamental Research Foundation for Key Projects of Shanghai Science and Technology Committee under Grant No.06JC14032
文摘We investigate transport through a perfect quantum wire with a side-coupled quantum dot under an ac field. Time-averaged complex conductance is formulated by using the nonequilibrium Green function (NGF) method. We find that the electron-photon interaction together with the quantum interference of electron wave function can lead to anti-resonance in the conductance, which is then useful for tuning coherence and phases of electrons. Meanwhile, we study the temperature dependence of the conductance. Interestingly, a peak-structure can be developed at the Fano resonance levels with increasing temperatures.
文摘Effects of vanadium on light olefins selectivity of FCC catalysts were investigated with vanadium having different oxidation numbers (hereinafter abbreviated as Oxnum). Molecular modeling studies showed that vanadium with low Oxnum could affect the chemical conversion of large-size hydrocarbon molecules. However, the vanadium deposited on equilibrium catalyst bad high Oxnum because of the oxidation reaction taking place in the regenerator, so an activation method to reduce vanadium Oxnum named "selective activation" was introduced. It was proved by means of Electron Paramagnetic Resonance (EPR) and Temperature-Programmed Reduction (TPR) methods that the vanadium Oxnum was decreased, when the catalyst was activated. The molecular modeling studies are consistent well with the lab evaluation results. The light olefins selectivity of activated equilibrium catalysts was better than that achieved by the inactivated catalysts. Similar results were observed with the lab vanadium-contaminated catalyst. The light olefins selectivity of the catalyst was optimized when the vanadium Oxnum was close to 2 (VO).
基金Projects(51878245,U1965105)supported by the National Natural Science Foundation of ChinaProject(2019GSF110006)supported by the Key Research and Development Program of Shandong Province,China+2 种基金Project(2020Z035)supported by the Ningbo 2025 Science and Technology Major Project,ChinaProject(KJ2017B01)supported by the Scientific Research Project of Department of Education of Anhui Province,ChinaProject(2019CEM001)supported by the State Key Laboratory of High Performance Civil Engineering Materials,China。
文摘Cracks easily generate in concrete at early age owing to the shrinkage deformation.CaO-based expansion agent(CEA)and superabsorbent polymers(SAP)have been extensively used for the mitigation of concrete shrinkage.The macroscopic properties of concrete are highly determined by the microstructure.In this study,the influence of CEA and SAP addition on the pore structure evolution of cement paste under different curing temperatures was evaluated via low-field nuclear magnetic resonance spectroscopy.Test results indicated that,in cement paste,a higher CEA content led to a higher porosity and a larger most probable pore diameter(MPPD).Meanwhile,SAP addition increased the porosity and MPPD of CEA cement paste at early age but decreased them after 7 d,and a higher SAP content always brought a higher porosity and MPPD.Furthermore,the addition of SAP led to a lower porosity and MPPD of CEA cement paste than that of plain cement paste after 14 d.Moreover,the porosity and MPPD of CEA cement paste decreased first and subsequently increased as the curing temperature raised.
基金Supported by the National Science Foundation of China(Nos.21566029,21566028and 21266017)
文摘The effect of pyrolysis on the microstructure and moisture adsorption of lignite was investigated with low field nuclear magnetic resonance spectroscopy. Changes in oxygen-containing groups were analyzed by Fourier transform infrared spectroscopy (FTIR), and H20 adsorption mechanism on the surface of lignite pyrolysis was inferred. Two major changes in the pore structure of lignite char were observed as temperature increased in 105-200 ℃ and 500-700 ℃. Pyrolysis temperature is a significant factor in removing carboxyl and phenolic hydroxyl from lignite. Variation of ether bond content can be divided into three stages; the content initially increased, then decreased, and finally increased. The equilibrium adsorption ratio, content of oxygen-containing groups, and variation of pore volume below 700° were closely correlated with each other. The amount of adsorbed water on char pyrolyzed at 700 ℃ increased. Moreover, the adsorption capacity of the lignite decreased, and the adsorption state changed.
基金Projects(51878245,U1965105) supported by the National Natural Science Foundation of ChinaProject(2017YFB0310100) supported by the National Key R&D Program of ChinaProject(2019CEM001) supported by the State Key Laboratory of High Performance Civil Engineering Materials,China。
文摘The early-age thermal cracking easily generates and severely impairs the durability of concrete.The temperature rising inhibitor(TRI)was utilized to regulate the temperature evolution by controlling the cement hydration process.This paper aimed to investigate the pore structure formation and hydration characteristics of cement paste containing TRI by low-field nuclear magnetic resonance.The experiment showed that the T_(2) peak of cement paste shifted from 7.32 ms to 0.23 ms regardless of TRI addition.But the pattern of pore structure formation was changed with TRI addition,that is,the pore structure formation was delayed,and the pore successively shifted to left in two parts.In addition,TRI addition significantly prolonged the duration of gel pore formation and greatly decreased the increase rate of gel water,which implied that TRI introduction hindered the growth of C-S-H,and subsequently decreased the hydration rates and delayed the main hydration peak.Meanwhile,TRI dissolved and diffused rapidly at 40℃,delaying the hydration of cement paste seriously.Moreover,TRI brought about the C-S-H nucleation homogeneous and the ion concentration uniform,which might reduce the localized curvature occurring on the sheet of C-S-H,and then decreased the T_(2) intensity of capillary water and gel water.
基金Project supported by the National Natural Science Foundation of China (No. 50674062)the Key Projects in the National Science & Technology Pillar Program (No. 2006BAC21B03)the Beijing Science and Technology Plan Projects of China (No. D07040300690000)
文摘A new method for estimating the degree of [SiO4]4-polymerization of coal gangue is presented. The method uses the relative bridging oxygen number (RBO) based on nuclear magnetic resonance (NMR) techniques. X-ray diffraction (XRD) and 29Si NMR techniques have been used to study phase transitions and silicate polymerization of coal gangue calcined at different temperatures or co-calcined. It has been found that phase transition of clay minerals causes silicate polymerization to change with temperature. In this study, cementing activity and RBO were determined to be inversely related. Generally, activated coal gangue with lower RBO had better cementitious activity.
文摘A long period fiber grating (LPFG) fabricated upon the all-solid photonic bandgap fiber by CO2 laser irradiation was investigated, and its resonance wavelength was at 1335.76nm with a modulation depth of 15dB and a 3-dB bandwidth of 2.6nm. We studied its strain, temperature, and index sensor characteristics, the strain sensitivity of 0.992 pm/m was obtained by using linear fit, and the relationship between the refractive index and wavelength obeyed the distribution of quadratic function. Also, we demonstrated its temperature response was relatively insensitive (21.51 pm/~C).
基金supported by the Natural Science Foundation of Yunnan Province (Grant No. 2010CD031)the National Natural Science Foun-dation of China (Grant Nos. 50906035, 51066002 and U0937604)
文摘In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific examples have been considered: one is the example of bistable system, and the other is the example of metastable system. The explicit expressions of the mean-first passage time (MFPT) and signal-to-noise ratio (SNR) for both specific examples are obtained, respectively. Based on the numerical computations, we compare the quantum case with its classical counterpart. Our research results show that: (i) the quantum effect accelerates the escape of the Brownian particle in comparison with the classical result and (ii) the quantum effect enhances the SR in the SNR as a function of β for a bistable system (i.e., β = 1/kBT, kB is the Boltzmann constant and T is the temperature), while for a metastable system, the β amplifies the quantum effects, and the quantum effect weakens the SNR as a function of β.
基金supported by the National Natural Science Foundation of China(No.61177076)the Fundamental Research Funds for the Central Universities(Nos.2013-Ia-038,2013-Ia-006 and 2013-ZY-121)
文摘The temperature characteristics of near infrared surface plasmon resonance (SPR) sensors with Kretschmann configuration are studied theoretically and experimentally. The experimental results match with the numerical simulations in the temperature range from 10 ℃ to 40.℃. With the increase of temperature, the resonance angle for gas increases slightly, but that for aqueous solution decreases obviously. No matter the dielectric layer is gas or aqueous solution, the resonance peaks are both broadened.