The hot deformation behavior and microstructure evolution of 1460 Al-Li alloy were investigated by isothermal compression test conducted at various strain rates(10-3-10 s-1) and temperatures(573-773 K). The flow s...The hot deformation behavior and microstructure evolution of 1460 Al-Li alloy were investigated by isothermal compression test conducted at various strain rates(10-3-10 s-1) and temperatures(573-773 K). The flow stress curves were corrected by considering the friction at the platen/specimen interface and the temperature change due to the deformation heating. The effects of strain, strain rate and temperature on the deformation behavior were characterized by the Zener-Hollomon parameter in a hyperbolic-sine equation, and the constitutive equations were established according to the peak flow stress associated with dynamic recovery, dynamic recrystallization and the dissolution of T1 phases. In the entire strain rate and temperature range, the prediction capabilities of the developed constitutive equation are proved to be feasible and effective with a linear correlation coefficient and an average absolute relative error coefficient of 0.9909 and 6.72%, respectively.展开更多
The hot deformation behavior and workability of pre-extruded ZK60A magnesium alloy were investigated by compression tests in the temperature range of 250-450 ℃and the strain rate range of 0.001-10 s 1. The constituti...The hot deformation behavior and workability of pre-extruded ZK60A magnesium alloy were investigated by compression tests in the temperature range of 250-450 ℃and the strain rate range of 0.001-10 s 1. The constitutive equation for the pre-extruded ZK60A alloy can be described by hyperbolic sine function. Processing maps were constructed from true strains of -0.2 to -0.8. The alloy experienced complete dynamic recrystallization (DRX) and showed good workability in the temperature range of 300-400 ℃ and the strain rate range of 0.01-0.001 s-Z, where hot working in pre-extruded ZK60A, such as forging, can be carried out. For large deformation to true strain of over -0.5, strain rates above 0.1 s-1 are not recommended at all temperatures, where flow instability such as local strain concentration, twinning deformation, abnormal grain growth, micro-cracks, and shear fracture were observed. Climb-controlled dislocation creep dominates both the plastic deformation and nucleation of DRX of the pre-extruded ZK60A magnesium alloy.展开更多
To study the hot deformation behavior of a new powder metallurgy nickel-based superalloy,hot compression tests were conducted in the temperature range of 1020−1110℃ with the strain rates of 0.001−1 s^−1.It is found t...To study the hot deformation behavior of a new powder metallurgy nickel-based superalloy,hot compression tests were conducted in the temperature range of 1020−1110℃ with the strain rates of 0.001−1 s^−1.It is found that the flow stress of the superalloy decreases with increasing temperature and decreasing strain rate.An accurate constitutive equation is established using a hyperbolic-sine type expression.Moreover,processing map of the alloy is constructed to optimize its hot forging parameters.Three domains of dynamic recrystallization stability and instability regions are identified from the processing map at a strain of 0.7,respectively.The adiabatic shear band,intergranular crack and a combination of intergranular crack and wedge crack are demonstrated to be responsible for the instabilities.Comprehensively analyzing the processing map and microstructure,the optimal isothermal forging conditions for the superalloy is determined to be t=1075−1105℃ andε&=10^−3−10−2.8 s^−1.展开更多
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation CenterProject(2013JSJJ0001)supported by the Teachers’Research Foundation of Central South UniversityChina
文摘The hot deformation behavior and microstructure evolution of 1460 Al-Li alloy were investigated by isothermal compression test conducted at various strain rates(10-3-10 s-1) and temperatures(573-773 K). The flow stress curves were corrected by considering the friction at the platen/specimen interface and the temperature change due to the deformation heating. The effects of strain, strain rate and temperature on the deformation behavior were characterized by the Zener-Hollomon parameter in a hyperbolic-sine equation, and the constitutive equations were established according to the peak flow stress associated with dynamic recovery, dynamic recrystallization and the dissolution of T1 phases. In the entire strain rate and temperature range, the prediction capabilities of the developed constitutive equation are proved to be feasible and effective with a linear correlation coefficient and an average absolute relative error coefficient of 0.9909 and 6.72%, respectively.
基金Projects(51171113,51301107) supported by the National Natural Science Foundation of China
文摘The hot deformation behavior and workability of pre-extruded ZK60A magnesium alloy were investigated by compression tests in the temperature range of 250-450 ℃and the strain rate range of 0.001-10 s 1. The constitutive equation for the pre-extruded ZK60A alloy can be described by hyperbolic sine function. Processing maps were constructed from true strains of -0.2 to -0.8. The alloy experienced complete dynamic recrystallization (DRX) and showed good workability in the temperature range of 300-400 ℃ and the strain rate range of 0.01-0.001 s-Z, where hot working in pre-extruded ZK60A, such as forging, can be carried out. For large deformation to true strain of over -0.5, strain rates above 0.1 s-1 are not recommended at all temperatures, where flow instability such as local strain concentration, twinning deformation, abnormal grain growth, micro-cracks, and shear fracture were observed. Climb-controlled dislocation creep dominates both the plastic deformation and nucleation of DRX of the pre-extruded ZK60A magnesium alloy.
基金Project(2016YFB0700300)supported by the National Key Research and Development Program of ChinaProject(51774335)supported by the National Natural Science Foundation of China。
文摘To study the hot deformation behavior of a new powder metallurgy nickel-based superalloy,hot compression tests were conducted in the temperature range of 1020−1110℃ with the strain rates of 0.001−1 s^−1.It is found that the flow stress of the superalloy decreases with increasing temperature and decreasing strain rate.An accurate constitutive equation is established using a hyperbolic-sine type expression.Moreover,processing map of the alloy is constructed to optimize its hot forging parameters.Three domains of dynamic recrystallization stability and instability regions are identified from the processing map at a strain of 0.7,respectively.The adiabatic shear band,intergranular crack and a combination of intergranular crack and wedge crack are demonstrated to be responsible for the instabilities.Comprehensively analyzing the processing map and microstructure,the optimal isothermal forging conditions for the superalloy is determined to be t=1075−1105℃ andε&=10^−3−10−2.8 s^−1.