Based on current research, the characteristics and action mechanism of biological nitrification inhibitors at home and abroad were reviewed by combining with the latest research progress. The application effects of bi...Based on current research, the characteristics and action mechanism of biological nitrification inhibitors at home and abroad were reviewed by combining with the latest research progress. The application effects of biological nitrification inhibitors on agricultural production were summarized. Research hotspot and achievements of biological nitrification inhibitors at home and abroad were summarized. The research direction in future was forecasted.展开更多
Absolute commitment to reduce the impact of greenhouse gas emissions while increasing fuel efficiency and power density requires further enhancement of prime mover characteristics and special coatings, but mostly requ...Absolute commitment to reduce the impact of greenhouse gas emissions while increasing fuel efficiency and power density requires further enhancement of prime mover characteristics and special coatings, but mostly requires compliance with EEDI (energy efficiency design index) measures. For the container shipping industry this represents significant increases in fuel costs that can be mitigated above all by reduction of power demand, that is, of ship frictional resistance. In this respect, this paper discusses advantages attainable by application of the ACS (air cavity system) technology on the basis of recent KSRC (Krylov State Research Centre) studies Savings in operating costs yielded by the enhanced propulsion performance for ships fitted with this system are illustrated by a case study of a containership.展开更多
Hexagonal β-Co(OH)2 nanosheets with edge length of 50 nm and thickness of 10 nm were hydrothermally synthesized with the aid of triethylamine.Upon calcination at 350°C in air,the β-Co(OH)2 nanosheets was conver...Hexagonal β-Co(OH)2 nanosheets with edge length of 50 nm and thickness of 10 nm were hydrothermally synthesized with the aid of triethylamine.Upon calcination at 350°C in air,the β-Co(OH)2 nanosheets was converted into Co3O4 nanosheets with a similar dimension.Structural analyses during the calcination process identified that the β-Co(OH)2 precursor was initially dehydrated to HCoO2 and subsequently transferred into Co3O4.When being applied to catalyze CO oxidation at room temperature,the Co3O4 nanosheets exhibited a higher activity than the conventional spherical nanoparticles.This was perhaps related to the partial exposure of the{112}planes over the Co3O4 nanosheets.The porous structure generated during the calcination process also provided significant amounts of surface defects,which might contribute to the enhanced catalytic activity as well.展开更多
The structure and physical properties of a thin titania sol-gel layer prepared on silicon and silica surfaces were examined. Spectroscopic (FTIR, UV-VIS spectroscopy), refractive index (ellipsometry) and microscop...The structure and physical properties of a thin titania sol-gel layer prepared on silicon and silica surfaces were examined. Spectroscopic (FTIR, UV-VIS spectroscopy), refractive index (ellipsometry) and microscopic (light microscopy and SEM/EDS) tools were used to examine both chemical uniformity and physical uniformity of the sol-gel glass layers. The conditions for the fabrication of uniform layers were established, and room temperature dopant incorporation was examined. The absorption bands of porphyrin-containing titania sol-gel layers were characterized. By addition of a metal salt to the titania layer, it was possible to metallate the free-base porphyrin within and change the UV-VIS absorbance of the porphyrin, the basis of metal detection using porphyrins. The metalloporphyrins were detected by localized laser ablation inductive coupled mass spectroscopy (LA-ICP-MS), indicating fairly uniform distribution of metals across the titania surface.展开更多
基金Supported by Tibet Natural Science Foundation(ZJ2014068)School-level Key Project of Tibet Vocational Technical College(2012L07)~~
文摘Based on current research, the characteristics and action mechanism of biological nitrification inhibitors at home and abroad were reviewed by combining with the latest research progress. The application effects of biological nitrification inhibitors on agricultural production were summarized. Research hotspot and achievements of biological nitrification inhibitors at home and abroad were summarized. The research direction in future was forecasted.
文摘Absolute commitment to reduce the impact of greenhouse gas emissions while increasing fuel efficiency and power density requires further enhancement of prime mover characteristics and special coatings, but mostly requires compliance with EEDI (energy efficiency design index) measures. For the container shipping industry this represents significant increases in fuel costs that can be mitigated above all by reduction of power demand, that is, of ship frictional resistance. In this respect, this paper discusses advantages attainable by application of the ACS (air cavity system) technology on the basis of recent KSRC (Krylov State Research Centre) studies Savings in operating costs yielded by the enhanced propulsion performance for ships fitted with this system are illustrated by a case study of a containership.
基金supported by the National Basic Research Program of China(2013CB933100)the National Natural Science Foundation of China(20923001 and 21025312)
文摘Hexagonal β-Co(OH)2 nanosheets with edge length of 50 nm and thickness of 10 nm were hydrothermally synthesized with the aid of triethylamine.Upon calcination at 350°C in air,the β-Co(OH)2 nanosheets was converted into Co3O4 nanosheets with a similar dimension.Structural analyses during the calcination process identified that the β-Co(OH)2 precursor was initially dehydrated to HCoO2 and subsequently transferred into Co3O4.When being applied to catalyze CO oxidation at room temperature,the Co3O4 nanosheets exhibited a higher activity than the conventional spherical nanoparticles.This was perhaps related to the partial exposure of the{112}planes over the Co3O4 nanosheets.The porous structure generated during the calcination process also provided significant amounts of surface defects,which might contribute to the enhanced catalytic activity as well.
文摘The structure and physical properties of a thin titania sol-gel layer prepared on silicon and silica surfaces were examined. Spectroscopic (FTIR, UV-VIS spectroscopy), refractive index (ellipsometry) and microscopic (light microscopy and SEM/EDS) tools were used to examine both chemical uniformity and physical uniformity of the sol-gel glass layers. The conditions for the fabrication of uniform layers were established, and room temperature dopant incorporation was examined. The absorption bands of porphyrin-containing titania sol-gel layers were characterized. By addition of a metal salt to the titania layer, it was possible to metallate the free-base porphyrin within and change the UV-VIS absorbance of the porphyrin, the basis of metal detection using porphyrins. The metalloporphyrins were detected by localized laser ablation inductive coupled mass spectroscopy (LA-ICP-MS), indicating fairly uniform distribution of metals across the titania surface.