A mathematical model of resin flow and temperature variation in the filling stage of the resin transfer molding (RTM) is developed based on the control volume/finite element method (CV/FEM). The effects of the heat tr...A mathematical model of resin flow and temperature variation in the filling stage of the resin transfer molding (RTM) is developed based on the control volume/finite element method (CV/FEM). The effects of the heat transfer and chemical reaction of the resin on the flow and temperature are considered. The numerical algorithm of the resin flow and temperature variation in the process of RTM are studied. Its accuracy and convergence are analyzed. The comparison of temperature variations between experimental results and model predictions is carried out for two RTM cases. Result shows that the model is efficient for evaluating the flow and temperature variation in the filling stage of RTM and there is a good coincidence between theory and experiment.展开更多
The temperature distribution in laminated beams underging thermal boundary conditions has been investigated.The thermal boundary conditions are general and include various combinations of prescribed heat fluxes and te...The temperature distribution in laminated beams underging thermal boundary conditions has been investigated.The thermal boundary conditions are general and include various combinations of prescribed heat fluxes and temperatures at the edges.An analytical solution of temperature for the laminated beam is present on the basis of the heat conduction theory in this paper.The proposed method is applicable to the beams with arbitrary thickness and layer numbers.Due to the complexity of the boundary conditions,the temperature field to be determined was considered from two sources.The first part was the temperature field from the complex temperature conditions at two edges of the laminated beam.The solution for the temperature of the first part was constructed to satisfy temperature boundary conditions at two edges.The second part was the temperature field from the upper and lower surface temperatures without taking account of the thermal conditions at two edges.In this part,the exact solution for the temperature was obtained based on the heat conduction theory.The convergence of the solution was examined by analyzing terms of Fourier series.The validity and feasibility of the proposed method was verified by comparing theoretical results with numerical results due to the equivalent single layer approach and the finite element method(FEM).The influences of surface temperatures,beam thicknesses,layer numbers and material properties with respects to the solution of the temperature field of the beam were investigated via a series of parametric studies.展开更多
文摘A mathematical model of resin flow and temperature variation in the filling stage of the resin transfer molding (RTM) is developed based on the control volume/finite element method (CV/FEM). The effects of the heat transfer and chemical reaction of the resin on the flow and temperature are considered. The numerical algorithm of the resin flow and temperature variation in the process of RTM are studied. Its accuracy and convergence are analyzed. The comparison of temperature variations between experimental results and model predictions is carried out for two RTM cases. Result shows that the model is efficient for evaluating the flow and temperature variation in the filling stage of RTM and there is a good coincidence between theory and experiment.
基金Projects(52108148,51878319,51578267)supported by the National Natural Science Foundation of ChinaProject(2021M701483)supported by the China Postdoctoral Research Funding Program+1 种基金Project(2021K574C)supported by the Jiangsu Postdoctoral Research Funding Program,ChinaProject(BK20190833)supported by the Natural Science Foundation of Jiangsu Province,China。
文摘The temperature distribution in laminated beams underging thermal boundary conditions has been investigated.The thermal boundary conditions are general and include various combinations of prescribed heat fluxes and temperatures at the edges.An analytical solution of temperature for the laminated beam is present on the basis of the heat conduction theory in this paper.The proposed method is applicable to the beams with arbitrary thickness and layer numbers.Due to the complexity of the boundary conditions,the temperature field to be determined was considered from two sources.The first part was the temperature field from the complex temperature conditions at two edges of the laminated beam.The solution for the temperature of the first part was constructed to satisfy temperature boundary conditions at two edges.The second part was the temperature field from the upper and lower surface temperatures without taking account of the thermal conditions at two edges.In this part,the exact solution for the temperature was obtained based on the heat conduction theory.The convergence of the solution was examined by analyzing terms of Fourier series.The validity and feasibility of the proposed method was verified by comparing theoretical results with numerical results due to the equivalent single layer approach and the finite element method(FEM).The influences of surface temperatures,beam thicknesses,layer numbers and material properties with respects to the solution of the temperature field of the beam were investigated via a series of parametric studies.